
gSOAP 2.8.15 User Guide

Robert van Engelen
GENIVIA INC

May 12, 2013

Contents

1 Introduction 8

1.1 Getting Started . 8

1.2 Quick Start: Developing a Web Service Client Application 9

1.3 Quick Start: Developing a Web Service . 11

1.4 Quick Start: XML Data Bindings . 14

1.5 Feature Overview . 17

2 Notational Conventions 19

3 Differences Between gSOAP Versions 2.4 (and Earlier) and 2.5 19

4 Differences Between gSOAP Versions 2.1 (and Earlier) and 2.2 19

5 Differences Between gSOAP Versions 1.X and 2.X 20

6 Interoperability 22

7 Quick User Guide 23

7.1 How to Build SOAP/XML Clients . 23

7.1.1 Example . 25

7.1.2 XML Namespace Considerations . 31

7.1.3 Example . 32

7.1.4 How to Generate C++ Client Proxy Classes 33

7.1.5 XSD Type Encoding Considerations . 35

7.1.6 Example . 36

7.1.7 How to Change the Response Element Name 37

7.1.8 Example . 37

1

7.1.9 How to Specify Multiple Output Parameters 38

7.1.10 Example . 38

7.1.11 How to Specify Output Parameters With struct/class Compound Data
Types . 39

7.1.12 Example . 39

7.1.13 How to Specify Anonymous Parameter Names 42

7.1.14 How to Specify a Method with No Input Parameters 43

7.1.15 How to Specify a Method with No Output Parameters 43

7.2 How to Build SOAP/XML Web Services . 44

7.2.1 Example . 44

7.2.2 MSVC++ Builds . 46

7.2.3 How to Create a Stand-Alone Server . 47

7.2.4 How to Create a Multi-Threaded Stand-Alone Service 48

7.2.5 How to Pass Application Data to Service Methods 55

7.2.6 Web Service Implementation Aspects . 55

7.2.7 How to Generate C++ Server Object Classes 55

7.2.8 How to Chain C++ Server Classes to Accept Messages on the Same Port 57

7.2.9 How to Generate WSDL Service Descriptions 59

7.2.10 Example . 60

7.2.11 How to Use Client Functionalities Within a Service 63

7.3 Asynchronous One-Way Message Passing . 65

7.4 Implementing Synchronous One-Way Message Passing over HTTP 66

7.5 How to Use the SOAP Serializers and Deserializers to Save and Load Application
Data using XML Data Bindings . 67

7.5.1 Mapping XML Schema to C/C++ with wsdl2h 67

7.5.2 Mapping C/C++ to XML Schema with soapcpp2 69

7.5.3 Serializing C/C++ Data to XML . 71

7.5.4 Deserializing C/C++ Data from XML . 76

7.5.5 Example . 78

7.5.6 Serializing and Deserializing Class Instances to Streams 82

7.5.7 How to Specify Default Values for Omitted Data 83

8 The wsdl2h WSDL and Schema Importer 84

8.1 wsdl2h Options . 86

8.2 Customizing Data Bindings With The typemap.dat File 87

2

9 Using the soapcpp2 Compiler and Code Generator 90

9.1 soapcpp2 Options . 91

9.2 SOAP 1.1 Versus SOAP 1.2 and Dynamic Switching 93

9.3 The soapdefs.h Header File . 94

9.4 How to Build Modules and Libraries with the #module Directive 94

9.5 How to use the #import Directive . 95

9.6 How to Use #include and #define Directives . 96

9.7 Compiling a SOAP/XML Client Application with soapcpp2 97

9.8 Compiling a SOAP/XML Web Service with soapcpp2 97

9.9 Compiling Web Services and Clients in ANSI C 98

9.10 Limitations of gSOAP . 99

9.11 Library Build Flags . 100

9.12 Run Time Flags . 102

9.13 Memory Management . 104

9.13.1 Memory Allocation and Management Policies 105

9.13.2 Intra-Class Memory Management . 108

9.14 Debugging . 109

9.15 Generating an Auto Test Server for Client Testing 110

9.16 Required Libraries . 111

10 The gSOAP Service Operation Specification Format 111

10.1 Service Operation Parameter Passing . 112

10.2 Error Codes . 114

10.3 C/C++ Identifier Name to XML Tag Name Mapping 117

10.4 Namespace Mapping Table . 121

11 gSOAP Serialization and Deserialization Rules 123

11.1 SOAP RPC Encoding Versus Document/Literal and xsi:type Info 124

11.2 Primitive Type Encoding . 124

11.3 How to Represent Primitive C/C++ Types as XSD Types 125

11.3.1 How to Use Multiple C/C++ Types for a Single Primitive XSD Type . . 131

11.3.2 How to use C++ Wrapper Classes to Specify Polymorphic Primitive Types131

11.3.3 XSD Schema Type Decoding Rules . 133

11.3.4 Multi-Reference Strings . 136

11.3.5 “Smart String” Mixed-Content Decoding 136

11.3.6 C++ Strings . 137

11.3.7 Changing the Encoding Precision of float and double Types 137

11.3.8 INF, -INF, and NaN Values of float and double Types 138

11.4 Enumeration Serialization . 138

3

11.4.1 Serialization of Symbolic Enumeration Constants 138

11.4.2 Encoding of Enumeration Constants . 139

11.4.3 Initialized Enumeration Constants . 140

11.4.4 How to “Reuse” Symbolic Enumeration Constants 140

11.4.5 Boolean Enumeration Serialization for C 141

11.4.6 Bitmask Enumeration Serialization . 141

11.5 Struct Serialization . 142

11.6 Class Instance Serialization . 142

11.6.1 Example . 144

11.6.2 Initialized static const Fields . 145

11.6.3 Class Methods . 145

11.6.4 Getter and Setter Methods . 145

11.6.5 Streaming XML with Getter and Setter Methods 147

11.6.6 Polymorphism, Derived Classes, and Dynamic Binding 147

11.6.7 XML Attributes . 151

11.6.8 QName Attributes and Elements . 152

11.7 Union Serialization . 153

11.8 Serializing Pointer Types . 154

11.8.1 Multi-Referenced Data . 155

11.8.2 NULL Pointers and Nil Elements . 156

11.9 Void Pointers . 156

11.10Fixed-Size Arrays . 158

11.11Dynamic Arrays . 158

11.11.1 SOAP Array Bounds Limits . 159

11.11.2 One-Dimensional Dynamic SOAP Arrays 159

11.11.3 Example . 160

11.11.4 One-Dimensional Dynamic SOAP Arrays With Non-Zero Offset 161

11.11.5 Nested One-Dimensional Dynamic SOAP Arrays 163

11.11.6 Multi-Dimensional Dynamic SOAP Arrays 163

11.11.7 Encoding XML Generics Containing Dynamic Arrays 164

11.11.8 STL Containers . 166

11.11.9 Polymorphic Dynamic Arrays and Lists 169

11.11.10How to Change the Tag Names of the Elements of a SOAP Array or List 170

11.12Base64Binary XML Schema Type Encoding . 170

11.13hexBinary XML Schema Type Encoding . 173

11.14Literal XML Encoding Style . 173

11.14.1 Serializing and Deserializing Mixed Content XML With Strings 175

4

12 SOAP Fault Processing 177

13 SOAP Header Processing 179

14 MIME Attachments 181

14.1 Sending a Collection of MIME Attachments (SwA) 181

14.2 Retrieving a Collection of MIME Attachments (SwA) 184

15 DIME Attachments 184

15.1 Sending a Collection of DIME Attachments . 185

15.2 Retrieving a Collection of DIME Attachments . 185

15.3 Serializing Binary Data in DIME . 186

15.4 Streaming DIME . 189

15.5 Streaming Chunked DIME . 193

15.6 WSDL Bindings for DIME Attachments . 193

16 MTOM Attachments 193

16.1 Generating MultipartRelated MIME Attachment Bindings in WSDL 195

16.2 Sending and Receiving MTOM Attachments . 195

16.3 Streaming MTOM/MIME . 197

16.4 Redirecting Inbound MTOM/MIME Streams Based on SOAP Body Content . . 201

16.5 Streaming Chunked MTOM/MIME . 202

17 XML Validation 203

17.1 Occurrence Constraints . 203

17.1.1 Default Values . 203

17.1.2 Elements with minOccurs and maxOccurs Restrictions 204

17.1.3 Required and Prohibited Attributes . 204

17.2 Value Constraints . 205

17.2.1 Data Length Restrictions . 205

17.2.2 Value Range Restrictions . 206

17.2.3 Pattern Restrictions . 206

17.3 Element and Attribute Qualified/Unqualified Forms 207

18 SOAP/XML Over UDP 209

18.1 Using WS-Addressing with SOAP-over-UDP . 210

18.2 Client-side One-way Unicast . 211

18.3 Client-side One-way Multicast . 211

18.4 Client-side Request-Response Unicast . 212

18.5 Client-side Request-Response Multicast . 212

18.6 SOAP-over-UDP Server . 214

18.7 SOAP-over-UDP Multicast Receiving Server . 215

5

19 Advanced Features 216

19.1 Internationalization . 216

19.2 Customizing the WSDL and Namespace Mapping Table File Contents With
gSOAP Directives . 216

19.2.1 Example . 224

19.3 Transient Data Types . 224

19.4 Serialization ”as is” with Volatile Data Types . 226

19.5 How to Declare User-Defined Serializers and Deserializers 227

19.6 How to Serialize Data Without Generating XSD Type Attributes 228

19.7 Function Callbacks for Customized I/O and HTTP Handling 229

19.8 HTTP 1.0 and 1.1 . 237

19.9 HTTP 307 Temporary Redirect Support . 237

19.10HTTP GET Support . 238

19.11TCP and HTTP Keep-Alive . 239

19.12HTTP Chunked Transfer Encoding . 241

19.13HTTP Buffered Sends . 241

19.14HTTP Authentication . 242

19.15HTTP NTLM Authentication . 242

19.16HTTP Proxy NTLM Authentication . 244

19.17HTTP Proxy Basic Authentication . 244

19.18Speed Improvement Tips . 245

19.19Timeout Management for Non-Blocking Operations 245

19.20Socket Options and Flags . 246

19.21Secure SOAP Web Services with HTTPS/SSL . 247

19.22Secure SOAP Clients with HTTPS/SSL . 252

19.23SSL Authentication Callback . 254

19.24SSL Certificates and Key Files . 254

19.25SSL Hardware Acceleration . 256

19.26SSL on Windows . 256

19.27Zlib Compression . 256

19.28Client-Side Cookie Support . 258

19.29Server-Side Cookie Support . 259

19.30Connecting Clients Through Proxy Servers . 262

19.31FastCGI Support . 262

19.32How to Create gSOAP Applications With a Small Memory Footprint 262

19.33How to Eliminate BSD Socket Library Linkage 263

19.34How to Combine Multiple Client and Server Implementations into one Executable 264

19.35How to Build a Client or Server in a C++ Code Namespace 264

6

19.36How to Create Client/Server Libraries . 265

19.36.1 C++ Clients Example . 267

19.36.2 C Clients Example . 269

19.36.3 C Services Chaining Example . 271

19.37How to Create DLLs . 272

19.37.1 Create the Base stdsoap2.dll . 272

19.37.2 Creating Client and Server DLLs . 273

19.38gSOAP Plug-ins . 273

19.38.1 The Message Logging and Statistics Plug-in 276

19.38.2 RESTful Interface: The HTTP GET Plug-in 276

19.38.3 RESTful Interface: The HTTP POST Plug-in 278

19.38.4 The HTTP MD5 Checksum Plug-in . 280

19.38.5 The HTTP Digest Authentication Plug-in 280

19.38.6 The WS-Addressing Plug-in . 282

19.38.7 The WS-ReliableMessaging Plug-in . 282

19.38.8 The WS-Security Plug-in . 283

19.38.9 WS-Discovery . 283

Copyright (C) 2000-2012 Robert A. van Engelen, GENIVIA INC, All Rights Reserved.

7

1 Introduction

The gSOAP tools provide an automated SOAP and XML data binding for C and C++ based
on compiler technologies. The tools simplify the development of SOAP/XML Web services and
XML application in C and C++ using autocode generation and advanced mapping methods. Most
toolkits for Web services adopt a WSDL/SOAP-centric view and offer APIs that require the use of
class libraries for XML-specific data structures. This forces a user to adapt the application logic
to these libraries because users have to write code to populate XML and extract data from XML
using a vendor-specific API. This often leads to fragile solutions with little or no assurances for
data consistency, type safety, and XML validation. By contrast, gSOAP provides a type-safe and
transparent solution through the use of compiler technology that hides irrelevant WSDL-, SOAP-
, and XML-specific details from the user, while automatically ensuring XML validity checking,
memory management, and type-safe serialization. The gSOAP tools automatically map native and
user-defined C and C++ data types to semantically equivalent XML data types and vice-versa. As
a result, full SOAP interoperability is achieved with a simple API relieving the user from the burden
of WSDL/SOAP/XML details, thus enabling him or her to concentrate on the application-essential
logic.

The gSOAP tools support the integration of (legacy) C/C++ codes (and other programming lan-
guages when a C interface is available), embedded systems, and real-time software in SOAP/XML
applications that share computational resources and information with other SOAP applications,
possibly across different platforms, language environments, and disparate organizations located
behind firewalls.

The gSOAP tools are also popular to implement XML data binding in C and C++. This means
that application-native data structures can be encoded in XML automatically, without the need to
write conversion code. The tools also produce XML schemas for the XML data binding, so external
applications can consume the XML data based on the schemas.

1.1 Getting Started

To start building Web services applications or automate XML data bindings with gSOAP, you
need:

• The gSOAP package from http://www.genivia.com/Products/downloads.html (select gSOAP
toolkit standard edition from the list of software packages)

• A C or C++ compiler.

• You may want to install OpenSSL and the Zlib libraries to enable SSL (HTTPS) and com-
pression. These libraries are available for most platforms and are often already installed.

The gSOAP software is self-contained, so there is no need to download any third-party software
(unless you want to use OpenSSL and the library is not already installed, or if you need to rebuild
the soapcpp2 tool, see below).

The gSOAP packages available from SourceForge include pre-build tools in the gsoap/bin directory:

8

• The wsdl2h WSDL/schema importer and data binding mapper tool.

• The soapcpp2 stub/skeleton compiler and code generator.

Binaries of these two tools are included in the gSOAP package in gsoap/bin for Windows, Linux,
and Mac OS plarforms, see also the README files in the package for more details.

Although gSOAP tools are available in binary format for several platforms, the code generated by
these tools are all equivalent. This means that the generated source codes can be transferred to
other platforms and locally compiled.

If you don’t have the binaries or if you want to rebuild them, you need

• A C compiler and Bison (or Yacc) to build soapcpp2.

• A C compiler and Flex (or Lex) to build soapcpp2.

• A C++ compiler to build wsdl2h.

Bison and Flex are preferred. Both are released under open source licenses that are compatible
with gSOAP’s licenses.

• Bison is available from http://www.gnu.org/software/bison

• Flex is available from http://flex.sourceforge.net

The gSOAP engine is built as a library libgsoap.a and libgsoap++.a with separate versions that
support SSL. See the README.txt instructions on how to build these libraries with the platform-
independent gSOAP package’s autoconf and automake. Alternatively, you can compile and link
the engine’s source code stdsoap2.c (or stdsoap2.cpp for C++) directly with your code.

The gSOAP packages contain numerous examples in the samples directory. Run make to build the
example applications. The examples are also meant to demonstrate different features of gSOAP.
A streaming MTOM attachment server and client application demonstrate efficient file exchanges
in samples/mtom-streaming. An SSL-secure Web server application demonstrates the generation of
dynamic content for Web browsing and Web services functionality at the same time, see sam-

ples/webservice. And much more.

1.2 Quick Start: Developing a Web Service Client Application

The gSOAP tools minimize application adaptation efforts for building Web Services by using a
XML data binding for C and C++ implemented by advanced XML schema analyzers and source-
to-source code generation tools. The gSOAP wsdl2h tool imports one or more WSDLs and XML
schemas and generates a gSOAP header file with familiar C/C++ syntax to define the Web service
operations and the C/C++ data types. The gSOAP soapcpp2 compiler then takes this header
file and generates XML serializers for the data types (soapH.h and soapC.cpp), the client-side stubs
(soapClient.cpp), and server-side skeletons (soapServer.cpp).

The gSOAP soapcpp2 compiler can also generate WSDL definitions for implementing a service from
scratch, i.e. without defining a WSDL first. This ”closes the loop” in that it enables Web services

9

development from WSDL or directly from a set op C/C++ operations in a header file without the
need for users to analyze Web service details.

You only need to follow a few steps to execute the tools from the command line or Makefile (see
also MSVC++ project examples in the samples directory with tool integration in the MSVC++
IDE). For example, to generate code for the calculator Web service, we run the wsdl2h tool from
the command line on the URL of the WSDL and use option -o to specify the output file:

> wsdl2h -o calc.h http://www.genivia.com/calc.wsdl

This generates the calc.h service definition header file with service operation definitions and types
for the operation’s data. This header file is then to be processed with soapcpp2 to generate the stub
and/or skeleton code and XML serialization routines. The calc.h file includes all documentation,
so you can use Doxygen (http://www.doxygen.org) to automatically generate the documentation
pages for your development.

The wsdl2h-generated service definitions header file also contains information on the use of the
service, such as WS-Policy assertions when applicable.

In this example we are developing a C++ API for the calculator service. By default, gSOAP
assumes you will use C++ with STL. To build without STL, use option -s:

> wsdl2h -s -o calc.h http://www.genivia.com/calc.wsdl

To build a pure C application, use option -c:

> wsdl2h -c -o calc.h http://www.genivia.com/calc.wsdl

We have not yet generated the stubs for the C/C++ API. To do so, run the soapcpp2 compiler:

> soapcpp2 -i -C -Iimport calc.h

Option -i (and alternatively option -j) indicates that we want C++ proxy and server objects that
include the client (and server) code, -C indicates client-side only files (soapcpp2 generates both client
and server stubs and skeletons by default). Option -I is needed to import the stlvector.h file from
the import directory in the gSOAP package to support serialization of STL vectors.

Suppose we develop a C++ client for the calculator service using wsdl2h -o calc.h http://www.genivia.com/calc.wsdl

and soapcpp2 -i -C calc.h.

We use the generated soapcalcProxy class and calc.nsmap XML namespace mapping table to access
the Web service. The soapcalcProxy class is a proxy to invoke the service:

#include ”soapcalcProxy.h”
#include ”calc.nsmap”
int main()
{

calcProxy service;
double result;
if (service.add(1.0, 2.0, result) == SOAP OK)

10

std::cout << ”The sum of 1.0 and 2.0 is ” << result << std::endl;
else

service.soap stream fault(std::cerr);
service.destroy(); // delete data and release memory
}

To complete the build, compile the code above and compile and link this with the generated
soapC.cpp, soapcalcProxy.cpp, and the run-time gSOAP engine -lgsoap++ (or use source stdsoap2.cpp

in case libgsoap++.a is not installed) with your code.

Suppose we develop a client in C using wsdl2h -c -o calc.h http://www.genivia.com/calc.wsdl and soapcpp2

-C calc.h. In this case our code uses a simple C function call to invoke the service and we also need
to explicitly delete data and the context with soap end and soap free:

#include ”soapH.h”
#include ”calc.nsmap”
int main()
{

struct soap *soap = soap new();
double result;
if (soap call ns add(soap, 1.0, 2.0, &result) == SOAP OK)

printf(”The sum of 1.0 and 2.0 is %lg\n”, result);
else

soap print fault(soap, stderr);
soap end(soap);
soap free(soap);
}

The calculator example is fairly simple and used here to illustrate the development process. The
development process for large-scale XML applications is similar. More extensive examples can be
found in the samples directory in the gSOAP package.

1.3 Quick Start: Developing a Web Service

Developing a service application is easy too. We will use CGI here because it is a simple mechanism.
This is not the preferred deployment mechanism. Because CGI is slow and stateless, we recommend
the development of a stand-alone gSOAP HTTP/HTTPS server (see comments at the end of this
section) or the use of Apache module or IIS (included in the gSOAP package under gsoap/mod gsoap

with instructions).

Suppose we implement a CGI-based service that returns the time in GMT. The Common Gateway
Interface (CGI) is a simple mechanism to publish services on your Web site.

For this example we start with a gSOAP header file, currentTime.h which contains the service defi-
nitions. Such a file can be obtained from a WSDL using wsdl2h when a WSDL is available. When a
WSDL is not available, you can define the service in C/C++ definitions in a newly created header
file and let the gSOAP tools generate the source code and WSDL for you.

Our currentTime service only has an output parameter, which is the current time defined in our
currentTime.h gSOAP service specification:

11

// File: currentTime.h
//gsoap ns service name: currentTime
//gsoap ns service namespace: urn:currentTime
//gsoap ns service location: http://www.yourdomain.com/currentTime.cgi
int ns currentTime(time t& response);

Note that we associate an XML namespace prefix ns and namespace name urn:currentTime with the
service WSDL and SOAP/XML messages. The gSOAP tools use a special convention for identifier
names that are part of a namespace: a namespace prefix (ns in this case) followed by a double
underscore . This convention is used to resolve namespaces and to avoid name clashes. The ns

namespace prefix is bound to the urn:currentTime namespace name with the //gsoap directive. The
//gsoap directives are used to set the properties of the service, in this case the name, namespace,
and location endpoint.

The service implementation for CGI requires a soap serve call on a soap context created with soap new.
The service operations are implemented as functions, which are called by the RPC dispatcher
soap serve:

// File: currentTime.cpp
#include ”soapH.h” // include the generated declarations
#include ”currentTime.nsmap” // include the XML namespace mappings
int main()
{

// create soap context and serve one CGI-based request:
return soap serve(soap new());
}
int ns currentTime(struct soap *soap, time t& response)
{

response = time(0);
return SOAP OK;
}

Note that we pass the soap struct with the gSOAP context information to the service routine. This
can come in handy to determine properties of the connection and to dynamically allocate data with
soap malloc(soap, num bytes) that will be automatically deleted when the service is finished.

We run the soapcpp2 compiler on the header file to generate the server-side code:

> soapcpp2 -S currentTime.h

and then compile the CGI binary:

> c++ -o currentTime.cgi currentTime.cpp soapC.cpp soapServer.cpp stdsoap2.cpp

You will find stdsoap2.cpp in the gsoap dir. Or after installation you can link with libgsoap++ instead
of using the stdsoap2.cpp source:

> c++ -o currentTime.cgi currentTime.cpp soapC.cpp soapServer.cpp -lgsoap++

12

To activate the service, copy the currentTime.cgi binary to your bin-cgi directory using the proper file
permissions.

The soapcpp2 tool generated the WSDL definitions currentTime.wsdl. You can use the WSDL to
advertize your service. You don’t need to use this WSDL to develop a gSOAP client. You can use
the currentTime.h file with soapcpp2 option -C to generate client-side code.

A convenient aspect of CGI is that it exchanges messages over standard input/output. Therefore,
you can run the CGI binary on the auto-generated example request XML file to test your server:

> ./currentTime.cgi < currentTime.currentTime.req.xml

and this displays the server response in SOAP XML.

The above approach works also for C. Just use soapcpp2 option -c in addition to the -S option to
generate ANSI C code. Of course, in C we use pointers instead of references and the currentTime.h

file should be adjusted to use C-only types.

A more elegant server implementation in C++ can be obtained by using the soapcpp2 option -i

(or -j) to generate C++ client-side proxy and server-side service objects as classes that you can
use to build clients and services in C++. The option removes the generation of soapClient.cpp and
soapServer.cpp, since these are no longer needed when we have classes that implement the client and
server logic:

> soapcpp2 -i -S currentTime.h

This generates soapcurrentTimeService.h and soapcurrentTimeService.cpp files, as well as auxiliary files
soapStub.h (included by default by all codes) and currentTime.nsmap.

Using the currentTimeService object we rewrite the CGI server as:

// File: currentTime.cpp
#include ”soapcurrentTimeService.h” // include the proxy declarations
#include ”currentTime.nsmap” // include the XML namespace mappings
int main()
{

// create server and serve one CGI-based request:
currentTimeService server;
server.serve();
server.destroy();
}
int currentTimeService::currentTime(time t& response)
{

response = time(0);
return SOAP OK;
}

Compile with

> c++ -o currentTime.cgi currentTime.cpp soapC.cpp soapcurrentTimeService.cpp -lgsoap++

13

and install the binary as CGI. To install the CGI binary please consult your Web server documen-
tation on how to deploy CGI applications.

To run the server as a stand-alone iterative (non-multithreaded) server on port 8080:

while (server.run(8080) != SOAP TCP ERROR)
server.soap stream fault(std::cerr);

To implement threaded services, please see Section 7.2.4. These stand-alone Web Services that
handle multiple SOAP requests by spawning a thread for each request. Thread pooling is also an
option.

For more information on server-side service classes, see Section 7.2.7. For more information on
client-side proxy classes, see Section 7.1.4.

1.4 Quick Start: XML Data Bindings

Or in other words, how to map schemas (XSD files) to C/C++ bindings for automatically reading
and writing XML data.

The XML C/C++ data binding in gSOAP provides and automated mechanism to encode any C
and C++ data type in XML (and decode XML back to C/C++ data). An XML schema (XSD
file) can be transformed into a set of C or C++ definitions that can be readily incorporated into
your application to manipulate XML with much more ease than DOM or SAX. Essentially, each
XML component definition in an XML schema has a C/C++ data type representation that has
equivalent type properties. The advantage of this approach is immediately apparent when we look
at an XSD complexType that maps to a class:

XSD C++
<complexType name="Address"> class ns Address
<sequence> {
<element name="name" type="string"/> std::string name;
<element name="home" type="tns:Location" minOccurs="0"/> ns Location *home;
<element name="phone" type="unsignedLong"/> ULONG64 phone;
<element name="dob" type="dateTime"/> time t dob;

</sequence>
<attribute name="ID" type="int" use="required"/> @int ID;

</complexType> }

In this way, an automatic mapping between XML elements of the XML schema and members of a
class is created to No DOM traversals and SAX events are needed. In addition, the XML C/C++
data binding makes XML manipulation type safe. That is, the type safety of C/C++ ensures that
only valid XML documents can be parsed and generated.

The wsdl2h tool performs the mapping of WSDL and XML schemas to C and/or C++ automatically.
The output of wsdl2h is an annotated header file that includes comments and documentation on
the use of the C/C++ declarations in a SOAP/XML client/server or in a generic application for
reading and writing XML using the auto-generated serializers.

14

We will illustrate this further with an example. Suppose we have an XML document with a book
record:

<book isbn="1234567890">
<title>Farewell John Doe</title>
<publisher>ABC’s is our Name</publisher>

</book>

An example XML schema that defines the book element and type could be

<schema ...>
<element name="book">
<complexType>
<sequence>
<element name="title" type="string" minOccurs="1"/>
<element name="publisher" type="string" minOccurs="1"/>

</sequence>
<attribute name="isbn" type="unsignedLong" use="required"/>

</complexType>
</element>

</schema>

Using wsdl2h we translate the XML schema that defines the book type and root element to a class
definition:

class book
{

@ULONG64 isbn;
std::string title;
std::string publisher;
}

Note that annotations such as @ are used to distinguish attributes from elements. These annotations
are gSOAP-specific and are handled by the soapcpp2 tool to generate serializers for the data type(s)
for reading and writing XML.

The soapcpp2 tool generates all the necessary code to parse and generate XML for book objects.
Validation constraints such as minOccurs="1" and use="required" are included in the generated
code as checks.

To write the XML representation of a book, we first create a soap engine context and use it with
soap write book (generated by soapcpp2) to write the object in XML to standard output:

soap *ctx = soap new1(SOAP XML INDENT); // new context with option
book bk;
bk.isbn = 1234567890;
bk.title = ”Farewell John Doe”;
bk.publisher = ”ABC’s is our Name”;
if (soap write book(ctx, &bk) != SOAP OK)

... error ...
soap destroy(ctx); // clean up allocated class instances

15

soap end(ctx); // clean up allocated temporaries
soap free(ctx); // delete context

The ctx gSOAP engine context (type struct soap) controls settings and holds state, such as XML
formatting, (e.g. SOAP XML INDENT), serialization options, current state, and I/O settings. Simply
set the output stream (std::ostream) ctx->os of the context to redirect the content, e.g. to a file
or string. Also, when serializing a graph rather than an XML tree (SOAP XML TREE option forces
trees) the XML output conforms to SOAP encoding for object graphs based on id-ref, see Section 7.5
for details.

To read the XML representation from standard input into a book object, use:

soap *ctx = soap new1(SOAP XML STRICT); // new context with option
book bk;
if (soap read book(ctx, &bk) != SOAP OK) ... error ...
else

cout ¡¡ bk.isbn ¡¡ ”, ” ¡¡ bk.title ¡¡ ”, ” ¡¡ bk.publisher ¡¡ endl;
... further use of bk ...
soap destroy(ctx); // delete deserialized objects
soap end(ctx); // delete temporaries
soap free(ctx); // delete context

Automatic built-in XML validation (enabled with SOAP XML STRICT) ensures that data members
are present so we can safely print them in this example, thus ensuring consistency of data with the
XML schema. Set the ctx->is input stream to read from a file/string stream instead of stdin.

The soap destroy and soap end calls deallocate the deserialized content, so use with care. In general,
memory management is automatic in gSOAP to avoid leaks.

The above uses a very simple example schema. The gSOAP toolkit handles all XML schema con-
structs defined by the XML schema standard. The toolkit is also able to (de)serialize pointer-based
C/C++ data structures (including cyclic graphs), structs/classes, unions, enums, STL containers,
and even special data types such as struct tm. Therefore, the toolkit works in two directions: from
WSDL/schema to C/C++ and from C/C++ to WSDL/schema.

The gSOAP toolkit also handles multiple schemas defined in multiple namespaces. Normally the
namespace prefixes of XML namespaces are added to the C/C++ type definitions to ensure type
uniqueness. For example, if we would combine two schemas in the same application where both
schemas define a book object, we need to resolve this conflict. In gSOAP this is done using names-
pace prefixes, rather than C++ namespaces (research has pointed out that XML namespaces are
not equivalent to C++ namespaces). Thus, the book class might actually be bound to an XML
namespace and the class would be named ns book, where ns is bound to the corresponding names-
pace.

The following options are available to control serialization:

soap-¿encodingStyle = NULL; // to remove SOAP 1.1/1.2 encodingStyle
soap mode(soap, SOAP XML TREE); // XML without id-ref (no cycles!)
soap mode(soap, SOAP XML GRAPH); // XML with id-ref (including cycles)
soap set namespaces(soap, struct Namespace *nsmap); //to set xmlns bindings

16

Other flags can be used to format XML, see Section 9.12.

More information on XML databinding support for C and C++, see Section 7.5.

1.5 Feature Overview

The highlights of gSOAP are:

• Unique interoperability features: the tools generate type-safe SOAP marshalling routines to
(de)serialize native and user-defined C and C++ data structures.

• Support WSDL 1.1, WSDL 2.0, SOAP 1.1, SOAP 1.2, SOAP RPC encoding style, and
document/literal style. gSOAP is one of the few SOAP toolkits that support the full range of
SOAP 1.1 RPC encoding features including sparse multi-dimensional arrays and polymorphic
types. For example, a service operation with a base class parameter may accept derived class
instances from a client. Derived class instances keep their identity through dynamic binding.
The toolkit also supports all XSD schema type constructs and has been tested against the
W3C XML Schema Patterns for Databinding Interoperability working group and of gSOAP
release 2.8.x passes all tests.

• Supports WS-Security, WS-Addressing, WS-ReliableMessaging, C14N exclusive canonicaliza-
tion. The protocols are implemented using code generation with wsdl2h and soapcpp2. The
gSOAP tools can be used to generate messaging protocols for other WS-* protocols.

• gSOAP supports XML-RPC and RSS protocols. Examples are provided.

• JSON support is included in the XML-RPC library to switch between XML-RPC and JSON
protocols. For more details, see the samples/xml-rpc-json folder in the package.

• The wsdl2h tool supports WS-Policy. Policy assertions are included in the generated service
description header file with recommendations and usage hints.

• gSOAP supports MIME (SwA), DIME, and MTOM attachments and has streaming capabil-
ities to direct the data stream to/from resources. gSOAP is the only toolkit that supports
streaming MIME, DIME, and MTOM attachment transfers, which allows you to exchange
binary data of practically unlimited size in the fastest possible way (streaming) while ensuring
the usefulness of XML interoperability.

• gSOAP supports SOAP-over-UDP.

• gSOAP supports IPv4 and IPv6.

• gSOAP supports Zlib deflate and gzip compression (for HTTP, TCP/IP, and XML file stor-
age).

• gSOAP supports SSL (HTTPS) using OpenSSL.

• gSOAP supports HTTP/1.0, HTTP/1.1 keep-alive, chunking, basic authentication, and digest
authentication using a plugin.

17

• gSOAP supports SOAP one-way messaging.

• The schema-specific XML pull parser is fast and efficient and does not require intermediate
data storage for demarshalling to save space and time.

• The soapcpp2 compiler includes a WSDL and schema generator for convenient Web Service
publishing.

• The soapcpp2 compiler generates sample input and output messages for verification and testing
(before writing any code). An option (-T) can be used to automatically implement echo
message services for testing.

• The WSDL importer wsld2h (converts to gSOAP header files) for automated client and server
development.

• Generates source code for stand-alone Web Services and client applications.

• Ideal for small devices such as Palm OS, Symbian, Pocket PC, because the memory footprint
is small.

• Ideal for building web services that are compute-intensive and are therefore best written in
C and C++.

• Platform independent: Windows, Unix, Linux, Mac OS X, Pocket PC, Palm OS, Symbian,
VXWorks, etc.

• Supports serializing of application’s native C and C++ data structures, which allows you to
save and load XML serialized data structures to and from files.

• Selective input and output buffering is used to increase efficiency, but full message buffering
to determine HTTP message length is not used. Instead, a three-phase serialization method is
used to determine message length. As a result, large data sets such as base64-encoded images
can be transmitted with or without DIME attachments by small-memory devices such as
PDAs.

• Supports C++ single class inheritance, dynamic binding, overloading, arbitrary pointer struc-
tures such as lists, trees, graphs, cyclic graphs, fixed-size arrays, (multi-dimensional) dy-
namic arrays, enumerations, built-in XSD Schema types including base64Binary encoding,
and hexBinary encoding.

• No need to rewrite existing C/C++ applications for Web service deployment. However, parts
of an application that use unions, pointers to sequences of elements in memory, and void* need
to be modified, but only if the data structures that adopt them are required to be serialized
or deserialized as part of a service operation invocation.

• Three-phase marshalling: 1) analysis of pointers, single-reference, multi-reference, and cyclic
data structures, 2) HTTP message-length determination, and 3) serialization as per SOAP
1.1 encoding style or user-defined encoding styles.

18

• Two-phase demarshalling: 1) SOAP parsing and decoding, which involves the reconstruction
of multi-reference and cyclic data structures from the payload, and 2) resolution of ”forward”
pointers (i.e. resolution of the forward href attributes in SOAP).

• Full and customizable SOAP Fault processing (client receive and service send).

• Customizable SOAP Header processing (send and receive), which for example enables easy
transaction processing for the service to keep state information.

2 Notational Conventions

The typographical conventions used by this document are:

Sans serif or italics font denotes C and C++ source code, file names, and shell/batch commands.

Bold font denotes C and C++ keywords.

Courier font denotes HTTP header content, HTML, XML, XML Schema content and WSDL
content.

[Optional] denotes an optional construct.

The keywords ”MUST”, ”MUST NOT”, ”REQUIRED”, ”SHALL”, ”SHALL NOT”, ”SHOULD”,
”SHOULD NOT”, ”RECOMMENDED”, ”MAY”, and ”OPTIONAL” in this document are to be
interpreted as described in RFC-2119.

3 Differences Between gSOAP Versions 2.4 (and Earlier) and 2.5

To comply with WS-I Basic Profile 1.0a, gSOAP 2.5 and higher adopts SOAP document/literal
by default. There is no need for concern, because the WSDL parser wsdl2h automatically takes
care of the differences when you provide a WSDL document, because SOAP RPC encoding, literal,
and document style are supported. A new soapcpp2 compiler option was added -e for backward
compatibility with gSOAP 2.4 and earlier to adopt SOAP RPC encoding by default in case you
want to develop a service that uses SOAP encoding. You can also use the gSOAP soapcpp2 compiler
directives to specify SOAP encoding for individual operarations, when desired.

4 Differences Between gSOAP Versions 2.1 (and Earlier) and 2.2

You should read this section only if you are upgrading from gSOAP 2.1 to 2.2 and later.

Run-time options and flags have been changed to enable separate recv/send settings for transport,
content encodings, and mappings. The flags are divided into four classes: transport (IO), content
encoding (ENC), XML marshalling (XML), and C/C++ data mapping (C). The old-style flags
soap disable X and soap enable X, where X is a particular feature, are deprecated. See Section 9.12
for more details.

19

5 Differences Between gSOAP Versions 1.X and 2.X

You should read this section only if you are upgrading from gSOAP 1.X to 2.X.

gSOAP versions 2.0 and later have been rewritten based on versions 1.X. gSOAP 2.0 and later is
thread-safe, while 1.X is not. All files in the gSOAP 2.X distribution are renamed to avoid confusion
with gSOAP version 1.X files:

gSOAP 1.X gSOAP 2.X
soapcpp soapcpp2
soapcpp.exe soapcpp2.exe
stdsoap.h stdsoap2.h
stdsoap.c stdsoap2.c
stdsoap.cpp stdsoap2.cpp

Changing the version 1.X application codes to accommodate gSOAP 2.X does not require a signif-
icant amount of recoding. The change to gSOAP 2.X affects all functions defined in stdsoap2.c[pp]

(the gSOAP runtime context API) and the functions in the sources generated by the gSOAP
soapcpp2 compiler (the gSOAP RPC+marshalling API). Therefore, clients and services developed
with gSOAP 1.X need to be modified to accommodate a change in the calling convention used in
2.X: In 2.X, all gSOAP functions (including the service operation proxy routines) take an addi-
tional parameter which is an instance of the gSOAP runtime context that includes file descriptors,
tables, buffers, and flags. This additional parameter is always the first parameter of any gSOAP
function.

The gSOAP runtime context is stored in a struct soap type. A struct was chosen to support applica-
tion development in C without the need for a separate gSOAP implementation. An object-oriented
approach with a class for the gSOAP runtime context would have prohibited the implementation
of pure C applications. Before a client can invoke service operations or before a service can accept
requests, a runtime context needs to be allocated and initialized. Three new functions are added
to gSOAP 2.X:

Function
Description

soap init(struct soap *soap) Initializes a context (required only once)
struct soap *soap new() Allocates, initializes, and returns a pointer to a runtime

context
struct soap *soap copy(struct soap *soap) Allocates a new runtime context and copies contents of the

context such that the new environment does not share any
data with the original context

A context can be reused as many times as necessary and does not need to be reinitialized in doing
so. A dynamically allocated context is deallocated with soap free.

A new context is only required for each new thread to guarantee exclusive access to a new runtime
context by each thread. For example, the following code stack-allocates the runtime context which
is used for multiple service operation calls:

int main()
{

20

struct soap soap;
...
soap init(&soap); // initialize runtime context
...
soap call ns method1(&soap, ...); // make a remote call
...
soap call ns method2(&soap, ...); // make another remote call
...
soap destroy(&soap); // remove deserialized class instances (C++ only)
soap end(&soap); // clean up and remove deserialized data
soap done(&soap); // detach context (last use and no longer in scope)
...
}

The runtime context can also be heap allocated:

int main()
{

struct soap *soap;
...
soap = soap new(); // allocate and initialize runtime context
if (!soap) // couldn’t allocate: stop
...
soap call ns method1(soap, ...); // make a remote call
...
soap call ns method2(soap, ...); // make another remote call
...
soap destroy(soap); // remove deserialized class instances (C++ only)
soap end(soap); // clean up and remove deserialized data
soap free(soap); // detach and free runtime context
}

A service needs to allocate and initialize an context before calling soap serve:

int main()
{

struct soap soap;
soap init(&soap);
soap serve(&soap);
}

Or alternatively:

int main()
{

soap serve(soap new());
}

The soap serve dispatcher handles one request or multiple requests when HTTP keep-alive is enabled
(with the SOAP IO KEEPALIVE flag see Section 19.11).

21

A service can use multi-threading to handle requests while running some other code that invokes
service operations:

int main()
{

struct soap soap1, soap2;
pthread t tid;
...
soap init(&soap1);
if (soap bind(&soap1, host, port, backlog) < 0) exit(1);
if (soap accept(&soap1) < 0) exit(1);
pthread create(&tid, NULL, (void*(*)(void*))soap serve, (void*)&soap1);
...
soap init(&soap2);
soap call ns method(&soap2, ...); // make a remote call
...
soap end(&soap2);
...
pthread join(tid, NULL); // wait for thread to terminate
soap end(&soap1); // release its data
}

In the example above, two runtime contexts are required. In comparison, gSOAP 1.X statically
allocates the runtime context, which prohibits multi-threading (only one thread can invoke service
operations and/or accept requests due to the single runtime context).

Section 7.2.4 presents a multi-threaded stand-alone Web Service that handles multiple SOAP re-
quests by spawning a thread for each request.

6 Interoperability

gSOAP interoperability has been verified with the following SOAP implementations and toolkits:

Apache 2.2
Apache Axis
ASP.NET
Cape Connect
Delphi
easySOAP++
eSOAP
Frontier
GLUE
Iona XMLBus
kSOAP
MS SOAP
Phalanx
SIM

22

SOAP::Lite
SOAP4R
Spray
SQLData
WCF
White Mesa
xSOAP
ZSI
4S4C

7 Quick User Guide

This user guide offers a quick way to get started with gSOAP. This section requires a basic un-
derstanding of the SOAP protocol and some familiarity with C and/or C++. In principle, SOAP
clients and SOAP Web services can be developed in C and C++ with the gSOAP soapcpp2 compiler
without a detailed understanding of the SOAP protocol when gSOAP client-server applications are
built as an ensamble and only communicate within this group (i.e. meaning that you don’t have
to worry about interoperability with other SOAP implementations). This section is intended to
illustrate the implementation of gSOAP Web services and clients that connect to and interoperate
with other SOAP implementations such as Apache Axis, SOAP::Lite, and .NET. This requires
some details of the SOAP and WSDL protocols to be understood.

7.1 How to Build SOAP/XML Clients

In general, the implementation of a SOAP client application requires a stub (also called service
proxy) for each service operation that the client invokes. The primary stub’s responsibility is to
marshall the parameter data, send the request with the parameters to the designated SOAP service
over the wire, to wait for the response, and to demarshall the parameter data of the response when
it arrives. The client application invokes the stub routine for a service operation as if it would
invoke a local function. To write a stub routine in C or C++ by hand is a tedious task, especially
if the input and/or output parameters of a service operation contain elaborate data structures
such as objects, structs, containers, arrays, and pointer-linked graph structures. Fortunately, the
gSOAP wsdl2h WSDL parser tool and soapcpp2 stub/skeleton and serialization code generator tool
automate the development of SOAP/XML Web service client and server applications.

The soapcpp2 tool generates the necessary gluing code (also called stubs and skeletons) to build
web service clients and services. The input to the soapcpp2 tool consists of an service definition-
annotated C/C++ header file. The header file can be generated from a WSDL (Web Service
Description Language) documentation of a service with the gSOAP wsdl2h WSDL parser tool.

Consider the following command (entered at the Linux/Unix/Windows command line prompt):

> wsdl2h -o calc.h http://www.genivia.com/calc.wsdl

This generates the file Web service description calc.h in an annotated C++ header file. The WSDL

23

specification (possibly consisting of multiple imported WSDL files and XSD schema files) is mapped
to C++ using C++ databindings for SOAP/XML. The generated header file contains data types
and messages to operate the service, and meta information related to WSDL and XML schemas.

To generate a service definition header file to develop a pure C client application, use the -c option:

> wsdl2h -c -o calc.h http://www.genivia.com/calc.wsdl

For more details on the WSDL parser and its options, see 8.

The service definition calc.h header file is further processed by the gSOAP soapcpp2 compiler to
generate the gluing code’s logic to invoke the Web service from a client.

Looking into the file calc.h we see that the SOAP service methods are specified as function pro-
totypes. For example, the add function to add two double floats:

int ns2 add(double a, double b, double& result);

The ns2 add function uses an XML namespace prefix to distinguish it from operations defined
in other namespaces, thus preventing name clashes. The convention to add an XML namespace
prefix to the names of operations, types, and struct and class members is universally used by the
gSOAP tools and automatically created by wsdl2h, but it is not mandatory when translating existing
C/C++ types and operations to web services. Thus, the prefix notation can be omitted from type
names defined in an header file with to run soapcpp2 to create clients and services that exchange
existing (i.e. application-native) data types.

These function prototypes are translated by the gSOAP soapcpp2 tool to stubs and proxies for
remote calls:

soapStub.h annotated copy of the input definitions
soapH.h serializers
soapC.cpp serializers
soapClient.cpp client calling stubs

Thus, the logic of the generated stub routines allow C and C++ client applications to seamlessly
interact with existing SOAP Web services as illustrated by the client code example in the next
section.

The input and output parameters of a SOAP service operation may be primitive data types or
complex compound data types such as containers and pointer-based linked data structures. These
are defined in the header file that is either generated by the WSDL parser or specified by hand.
The gSOAP soapcpp2 tool automatically generates XML serializers and XML deserializers for
the data types to enable the generated stub routines to encode and decode the contents of the
parameters of the service operations in SOAP/XML.

Note that the gSOAP soapcpp2 tool also generates skeleton routines soapServer.cpp for each of
the service operations specified in the header file. The skeleton routines can be readily used to
implement one or more of the service operations in a new SOAP Web service. These skeleton
routines are not used for building SOAP clients in C++, although they can be used to build mixed
SOAP client/server applications (peer applications).

24

7.1.1 Example

The add service operation (declared in the calc.h file obtained with the wsdl2h tool in the previous
section) adds two float values. The WSDL description of the service provides the endpoint to invoke
the service operations and the XML namespace used by the operations:

Endpoint URL: http://websrv.cs.fsu.edu/ engelen/calcserver.cgi
XML namespace: urn:calc

Each service operation has a SOAP action, which is an optional string to identify the operation
(mainly used with WS-Addressing), an operation request message and a response message. The re-
quest and response messages for SOAP RPC-encoded services are simply represented by C functions
with input and output parameters. For the add operation, the SOAP binding details are:

SOAP style: RPC
SOAP encoding: encoded
SOAP action: "" (empty string)

This information is translated to the wsdl2h-generated header file with the service definitions. The
calc.h header file for C++ generated by wsdl2h contains the following directives and declarations:
(the actual contents may vary depending on the release version and the options used to control the
output):

//gsoap ns2 service name: calc //gsoap ns2 service type: calcPortType //gsoap ns2 service port:
http://websrv.cs.fsu.edu/ engelen/calcserver.cgi
//gsoap ns2 service namespace: urn:calc

//gsoap ns2 service method-protocol: add SOAP
//gsoap ns2 service method-style: add rpc
//gsoap ns2 service method-encoding: add http://schemas.xmlsoap.org/soap/encoding/
//gsoap ns2 service method-action: add ””
int ns2 add(double a, double b, double& result);

The other calculator operations are similar and elided here for clarity.

The //gsoap directives are required for the soapcpp2 tool to generate code that is compliant to the
SOAP protocol. For this service the SOAP protocol with the common ”RPC encoding style” is
used. For //gsoap directive details, see Section 19.2.

The service operations are declared as function prototypes, with all non-primitive parameter types
needed by the operation declared in the header file (all parameter types are primitive in this case).

The calculator add opertion takes two double floats a and b, and returns the sum in result. By
convention, all parameters are input parameters except the last. The last parameter is
always the output parameter. A struct or class is used to wrap multiple output parameters, see
also Section 7.1.9. This last parameter must be a pointer or reference. By contrast, the input
parameters support pass by value or by pointer, but not pass by C++ reference.

The function prototype associated with a service operation always returns an int. The value indi-
cates success (0 or equivalently SOAP OK) or failure (any nonzero value). See Section 10.2 for the
nonzero error codes.

25

The role of the namespace prefix (ns2) in the service operation name in the function prototype
declaration is discussed in detail in 7.1.2. Basically, a namespace prefix is added to a function name
or type name with a pair of underscores, as in ns2 add, where ns2 is the namespace prefix and
add is the service operation name. This mechanism ensures uniqueness of operations and types
associated with a service.

It is strongly recommended to set the namespace prefix to a name of your choice. This avoids
problems when running wsdl2h on multiple WSDLs where the sequence of prefixes ns1, ns2, and so
on are arbitrarily assigned to the services. To choose a prefix name for all the operations and types
of a service, say prefix c for the calculator service, add the following line to typemap.dat:

c = "urn:calc"

and rerun wsdl2h. The typemap.dat configures wsdl2h to use specific bindings and data types for
services. The result is that c add is used to uniquely identify the operation rather than the more
arbitrary name ns2 add.

Note on the use of underscores in names: a single underscore in an identifier name will be translated
into a dash in XML, because dashes are more frequently used in XML compared to underscores,
see Section 10.3.

Next, the gSOAP soapcpp2 tool is invoked from the command line to process the calc.h service
definitions:

> soapcpp2 calc.h

The tool generates the stub routines for the service operations. Stub routines can be invoked by
a client program to invoke the remote service operations. The interface of the generated stub
routine is identical to the function prototype in the calc.h service defintion file, but with additional
parameters to pass the gSOAP engine’s runtime context soap, an endpoint URL (or NULL for the
default), and a SOAP action (or NULL for the default):

int soap call c add(struct soap *soap, char *URL, char *action, double a, double b, double&
result);

This stub routine is saved in soapClient.cpp. The file soapC.cpp contains the serializer and deseri-
alizer routines for the data types used by the stub. You can use option -c for the soapcpp2 tool to
generate pure C code, when needed.

Note: the soap parameter must be a valid pointer to a gSOAP runtime context. The URL can be set
to override the default endpoint address (the endpoint defined by the WSDL). The action parameter
can be set to override the default SOAP action.

The following example C/C++ client program uses the stub:

#include "soapH.h" // include all interfaces (library and generated)
#include "calc.nsmap" // import the generated namespace mapping table
int main()
{

double sum;

26

struct soap soap; // the gSOAP runtime context
soap init(&soap); // initialize the context (only once!)
if (soap call c add(&soap, NULL, NULL, 1.0, 2.0, &sum) == SOAP OK)

std::cout << ”Sum = ” << sum << std::endl;
else // an error occurred

soap print fault(&soap, stderr); // display the SOAP fault message on the stderr stream
soap destroy(&soap); // delete deserialized class instances (for C++)
soap end(&soap); // remove deserialized data and clean up
soap done(&soap); // detach the gSOAP context
return 0;
}

The call returns SOAP OK (zero) on success and a nonzero error on failure. When an error occurred
the fault is displayed with the soap print fault function. Use soap sprint fault(struct soap*, char *buf,

size t len) to print the error to a string, and use soap stream fault(struct soap*, std::ostream&) to send
it to a stream (C++ only).

The following functions can be used to explicitly setup a gSOAP runtime context (struct soap):

Function
Description

soap init(struct soap *soap) Initializes a runtime context
soap init1(struct soap *soap, soap mode iomode) Initializes a runtime context and

set in/out mode flags
soap init2(struct soap *soap, soap mode imode, soap mode omode) Initializes a runtime context and

set in/out mode flags
struct soap *soap new() Allocates, initializes, and returns

a pointer to a runtime context
struct soap *soap new1(soap mode iomode) Allocates, initializes, and returns

a pointer to a runtime context
and set in/out mode flags

struct soap *soap new2(soap mode imode, soap mode omode) Allocates, initializes, and returns
a pointer to a runtime context
and set in/out mode flags

struct soap *soap copy(struct soap *soap) Allocates a new runtime context
and copies a context (deep copy,
i.e. the new context does not
share any data with the other
context)

soap done(struct soap *soap) Reset, close communications, and
remove callbacks

soap free(struct soap *soap) Reset and deallocate the con-
text created with soap new or
soap copy

A runtime context can be reused as many times as necessary for client-side remote calls and does
not need to be reinitialized in doing so. A new context is required for each new thread to guarantee
exclusive access to runtime context by threads. Also the use of any client calls within an active
service method requires a new context.

The soapcpp2 code generator tool also generates a service proxy class for C++ client applications
(and service objects for server applications) with the -i (or -j) option:

27

> soapcpp2 -i calc.h

The proxy is defined in:

soapcalcProxy.h client proxy class
soapcalcProxy.cpp client proxy class

Note: without the -i option only old-style service proxies and objects are generated, which are less
flexible and no longer recommended. Use -j as an alternative to -i to generate classes with the
same functionality, but that are not inherited from struct soap and use a pointer to a struct soap

engine context that can be shared with other proxy and service class instances. This choice is also
important when services are chained, see Section 7.2.8.

The generated C++ proxy class initializes the gSOAP runtime context and offers the service inter-
face as a collection of methods:

#include "soapcalcProxy.h" // get proxy
#include "calc.nsmap" // import the generated namespace mapping table
int main()
{

calcProxy calc(SOAP XML INDENT);
double sum;
if (calc.add(1.0, 2.0, sum) == SOAP OK)

std::cout << ”Sum = ” << sum << std::endl;
else

calc.soap stream fault(std::cerr);
return calc.error; // nonzero when error
}

The proxy class is derived from the gSOAP runtime context structure struct soap and thus inher-
its (option -i) all state information of the runtime. The proxy constructor takes context mode
parameters to initialize the context, e.g. SOAP XML INDENT in this example.

The code is compiled and linked with soapcalcProxy.cpp, soapC.cpp, and stdsoap2.cpp (or use libg-

soap++.a).

The proxy class name is extracted from the WSDL content and may not always be in a short
format. Feel free to change the entry

//gsoap ns2 service name: calc

and rerun soapcpp2 to generate code that uses the new name.

When the example client application is invoked, a SOAP request is performed:

POST / engelen/calcserver.cgi HTTP/1.1
Host: websrv.cs.fsu.edu
User-Agent: gSOAP/2.7
Content-Type: text/xml; charset=utf-8
Content-Length: 464
Connection: close

28

SOAPAction: ""

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:c="urn:calc">
<SOAP-ENV:Body SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<c:add>
<a>1
2

</c:add>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The SOAP response message:

HTTP/1.1 200 OK
Date: Wed, 05 May 2010 16:02:21 GMT
Server: Apache/2.0.52 (Scientific Linux)
Content-Length: 463
Connection: close
Content-Type: text/xml; charset=utf-8

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ns="urn:calc">
<SOAP-ENV:Body SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<ns:addResponse>
<result>3</result>

</ns:addResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

A client can invoke a sequence of service operations:

#include "soapcalcProxy.h" // get proxy
#include "calc.nsmap" // import the generated namespace mapping table
int main()
{

calcProxy calc(SOAP IO KEEPALIVE); // keep-alive improves connection performance
double sum = 0.0;
double val[] = 5.0, 3.5, 7.1, 1.2 ;
for (int i = 0; i < 4; i++)

if (calc.add(sum, val[i], sum))

29

return calc.error;
std::cout << ”Sum = ” << sum << std::endl;
return 0;
}

In the above, no data is deallocated until the proxy is deleted. To deallocate deserialized data
between the calls, use:

for (int i = 0; i < 4; i++)
{

if (calc.add(sum, val[i], sum))
return calc.error;

calc.destroy();
}

Deallocation is safe here, since the float values were copied and saved in sum. In other scenarios
one must make sure data is copied or removed from the deallocation chain with:

soap unlink(struct soap *soap, const void *data)

which is to be invoked on each data item to be preserved, before destroying deallocated data. When
the proxy is deleted, also all deserialized data is deleted. To delegate deletion to another runtime
context for later removal, use:

soap delegate deletion(struct soap *soap from, struct soap *soap to)

For example

struct soap soap;
soap init(&soap);
{ // create proxy

calcProxy calc;
. . . data generated . . .
soap delegate deletion(&calc, &soap);
} // proxy deleted
. . . data used . . .
soap destroy(&soap);
soap end(&soap);
soap done(&soap);

In C (use wsdl2h -c) the example program would be written as:

#include "soapH.h"
#include "calc.nsmap"
int main()
{

struct soap soap;
double sum = 0.0;
double val[] = 5.0, 3.5, 7.1, 1.2 ;

30

int i;
for (i = 0; i < 4; i++)
soap init1(&soap, SOAP IO KEEPALIVE);

if (soap call c add(&soap, NULL, NULL, sum, val[i], &sum))
return soap.error;

printf(”Sum = %lg\n”, sum);
soap end(&soap);
soap done(&soap);
return 0;
}

The code above is compiled and linked with soapClient.c, soapC.c, and stdsoap2.c (or use libgsoap.a).

7.1.2 XML Namespace Considerations

The declaration of the ns2 add function prototype (discussed in the previous section) uses the
namespace prefix ns2 of the service operation namespace, which is distinguished by a pair of
underscores in the function name to separate the namespace prefix from the service operation
name. The purpose of a namespace prefix is to associate a service operation name with a service
in order to prevent naming conflicts, e.g. to distinguish identical service operation names used by
different services.

Note that the XML response of the service example uses a namespace prefix that may be
different (e.g. ns) as long as it bound to the same namespace name urn:calc through the
xmlns:ns="urn:calc binding. The use of namespace prefixes and namespace names is also re-
quired to enable SOAP applications to validate the content of SOAP messages. The namespace
name in the service response is verified by the stub routine by using the information supplied in a
namespace mapping table that is required to be part of gSOAP client and service application
codes. The table is accessed at run time to resolve namespace bindings, both by the generated
stub’s data structure serializer for encoding the client request and by the generated stub’s data
structure deserializer to decode and validate the service response. The namespace mapping table
should not be part of the header file input to the gSOAP soapcpp2 tool. Service details including
namespace bindings may be provided with gSOAP directives in a header file, see Section 19.2.

The namespace mapping table is:

struct Namespace namespaces[] =
{ // {”ns-prefix”, ”ns-name”}
{”SOAP-ENV”, ”http://schemas.xmlsoap.org/soap/envelope/”}, // MUST be first
{”SOAP-ENC”, ”http://schemas.xmlsoap.org/soap/encoding/”}, // MUST be second
{”xsi”, ”http://www.w3.org/2001/XMLSchema-instance”}, // MUST be third
{”xsd”, ”http://www.w3.org/2001/XMLSchema”}, // 2001 XML Schema
{”ns2”, ”urn:calc”}, // given by the service description
{NULL, NULL} // end of table

};

The first four namespace entries in the table consist of the standard namespaces used by the SOAP
1.1 protocol. In fact, the namespace mapping table is explicitly declared to enable a programmer

31

to specify the SOAP encoding style and to allow the inclusion of namespace-prefix with namespace-
name bindings to comply to the namespace requirements of a specific SOAP service. For example,
the namespace prefix ns2, which is bound to urn:calc by the namespace mapping table shown above,
is used by the generated stub routine to encode the add request. This is performed automatically
by the gSOAP soapcpp2 tool by using the ns2 prefix of the ns2 add method name specified in the
calc.h header file. In general, if a function name of a service operation, struct name, class name,
enum name, or field name of a struct or class has a pair of underscores, the name has a namespace
prefix that must be defined in the namespace mapping table.

The namespace mapping table will be output as part of the SOAP Envelope by the stub routine.
For example:

...
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ns2="urn:calc"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

...

The namespace bindings will be used by a SOAP service to validate the SOAP request.

7.1.3 Example

The incorporation of namespace prefixes into C++ identifier names is necessary to distinguish
service operations that share the same name but are provided by separate Web services and/or
organizations. It avoids potential name clashes, while sticking to the C syntax. The C++ proxy
classes generated with soapcpp2 -i (or -j) drop the namespace prefix from the method names

The namespace prefix convention is also be applied to non-primitive types. For example, class

names are prefixed to avoid name clashes when the same name is used by multiple XML schemas.
This ensures that the XML databinding never suffers from conflicting schema content. For example:

class e Address // an electronic address from schema ’e’
{

char *email;
char *url;
};
class s Address // a street address from schema ’s’
{

char *street;
int number;
char *city;
};

The namespace prefix is separated from the name of a data type by a pair of underscores ().

An instance of e Address is encoded by the generated serializer for this type as an Address element
with namespace prefix e:

32

<e:Address xsi:type="e:Address">
<email xsi:type="string">me@home</email>
<url xsi:type="string">www.me.com</url>

</e:Address>

While an instance of s Address is encoded by the generated serializer for this type as an Address
element with namespace prefix s:

<s:Address xsi:type="s:Address">
<street xsi:type="string">Technology Drive</street>
<number xsi:type="int">5</number>
<city xsi:type="string">Softcity</city>

</s:Address>

The namespace mapping table of the client program must have entries for e and s that refer to the
XML Schemas of the data types:

struct Namespace namespaces[] =
{ ...
{”e”, ”http://www.me.com/schemas/electronic-address”},
{”s”, ”http://www.me.com/schemas/street-address”},

...

This table is required to be part of the client application to allow access by the serializers and
deserializers of the data types at run time.

7.1.4 How to Generate C++ Client Proxy Classes

Proxy classes for C++ client applications are automatically generated by the gSOAP soapcpp2 tool,
as was shown in Section 7.1.1.

There is a new and improved code generation capability for proxy classes, which is activated with
the soapcpp2 -i (or j) option. These new proxy classes are derived from the soap structure, have a
cleaner interface and offer more capabilites.

With C++, you can also use wsdl2h option -qname to generate the proxy in a C++ namespace
name. This is very useful if you want to create multiple proxies for services by repeated use of
wsdl2h and combine them in one code. Alternatively, you can run wsdl2h just once on all service
WSDLs and have soapcpp2 generate multiple proxies for you. The latter approach does not use
C++ namespaces and may reduce the overall amount of code.

To illustrate the generation of a “standard” (old-style) proxy class, the calc.h header file example
of the previous section is augmented with the appropriate directives to enable the gSOAP soapcpp2

tool to generate the proxy class. Directives are included in the generated header file by the wsdl2h

WSDL importer:

// Content of file "calc.h":
//gsoap ns2 service name: calc
//gsoap ns2 service port: http://websrv.cs.fsu.edu/ engelen/calcserver.cgi

33

//gsoap ns2 service protocol: SOAP1.1
//gsoap ns2 service style: rpc
//gsoap ns2 service encoding: encoded
//gsoap ns2 service namespace: urn:calc

//gsoap ns2 service method-protocol: add SOAP
//gsoap ns2 service method-style: add rpc
//gsoap ns2 service method-encoding: add encoded
//gsoap ns2 service method-action: add ””
int ns2 add(double a, double b, double& result);

//gsoap ns2 service method-protocol: sub SOAP
//gsoap ns2 service method-style: sub rpc
//gsoap ns2 service method-encoding: sub encoded
//gsoap ns2 service method-action: sub ””
int ns2 sub(double a, double b, double& result);

//gsoap ns2 service method-protocol: mul SOAP
//gsoap ns2 service method-style: mul rpc
//gsoap ns2 service method-encoding: mul encoded
//gsoap ns2 service method-action: mul ””
int ns2 mul(double a, double b, double& result);

...

The first three directives provide the service details, which is used to name the proxy class, the ser-
vice location port (endpoint), and the XML namespace. The subsequent groups of three directives
per method define the operation’s SOAP style (RPC) and encoding (SOAP encoded), and SOAP
action string. These directives can be provided for each service operation when the SOAPAction is
required, such as with SOAP1.1 RPC encoded and when WS-Addressing is used. In this example,
the service protocol is set by default for all operations to use SOAP 1.1 RPC encoding. For //gsoap

directive details, see Section 19.2.

The soapcpp2 tool takes this header file and generates a proxy soapcalcProxy.h with the following
contents (not using option -i):

#include ”soapH.h”
class calc
{ public:

struct soap *soap;
const char *endpoint;
calc() { . . . };
˜calc() { . . . };
virtual int ns2 add(double a, double b, double& result) { return soap ? soap call ns2 add(soap,

endpoint, NULL, a, b, result) : SOAP EOM; };
virtual int ns2 sub(double a, double b, double& result) { return soap ? soap call ns2 sub(soap,

endpoint, NULL, a, b, result) : SOAP EOM; };
virtual int ns2 mul(double a, double b, double& result) { return soap ? soap call ns2 mul(soap,

endpoint, NULL, a, b, result) : SOAP EOM; };
. . .
};

34

The gSOAP context and endpoint are declared public to enable access.

This generated proxy class can be included into a client application together with the generated
namespace table as shown in this example:

#include ”soapcalcProxy.h” // get proxy
#include ”calc.nsmap” // get namespace bindings
int main()
{

calc s;
double r;
if (s.ns2 add(1.0, 2.0, r) == SOAP OK)

std::cout << r << std::endl;
else

soap print fault(s.soap, stderr);
return 0;
}

The constructor allocates and initializes a gSOAP context for the instance.

You can use soapcpp2 option -n together with -p to create a local namespaces table to avoid link
conflicts when you need multiple namespace tables or need to combine multiple clients, see also
Sections 9.1 and 19.36, and you can use a C++ code namespace to create a namespace qualified
proxy class, see Section 19.35.

The soapcpp2 -i option to generate proxy classes derived from the base soap structure. In addition,
these classes offer more functionality as illustrated in Section 7.1.1.

7.1.5 XSD Type Encoding Considerations

Many SOAP services require the explicit use of XML Schema types in the SOAP payload. The
default encoding, which is also adopted by the gSOAP soapcpp2 tool, assumes SOAP RPC encoding
which only requires the use of types to handle polymorphic cases. Nevertheless, the use of XSD
typed messages is advised to improve interoperability. XSD types are introduced with typedef

definitions in the header file input to the gSOAP soapcpp2 tool. The type name defined by a typedef

definition corresponds to an XML Schema type (XSD type). For example, the following typedef

declarations define various built-in XSD types implemented as primitive C/C++ types:

// Contents of header file:
...
typedef char *xsd string; // encode xsd string value as the xsd:string schema type
typedef char *xsd anyURI; // encode xsd anyURI value as the xsd:anyURI schema type
typedef float xsd float; // encode xsd float value as the xsd:float schema type
typedef long xsd int; // encode xsd int value as the xsd:int schema type
typedef bool xsd boolean; // encode xsd boolean value as the xsd:boolean schema type
typedef unsigned long long xsd positiveInteger; // encode xsd positiveInteger value as the
xsd:positiveInteger schema type
...

This easy-to-use mechanism informs the gSOAP soapcpp2 tool to generate serializers and deserial-
izers that explicitly encode and decode the primitive C++ types as built-in primitive XSD types

35

when the typedefed type is used in the parameter signature of a service operation (or when used
nested within structs, classes, and arrays). At the same time, the use of typedef does not force any
recoding of a C++ client or Web service application as the internal C++ types used by the appli-
cation are not required to be changed (but still have to be primitive C++ types, see Section 11.3.2
for alternative class implementations of primitive XSD types which allows for the marshalling of
polymorphic primitive types).

7.1.6 Example

Reconsider the calculator example, now rewritten with explicit XSD types to illustrate the effect:

// Contents of file ”calc.h”:
typedef double xsd double;
int ns2 add(xsd string a, xsd double b, xsd double &Result);

When processed by the gSOAP soapcpp2 tool it generates source code for the function soap call ns2 add,
which is identical to the C-style SOAP call:

int soap call ns2 add(struct soap *soap, char *URL, char *action, double a, double b, double&
result);

The client application does not need to be rewritten and can still call the proxy using the “old”
C-style function signatures. In contrast to the previous implementation of the stub however, the
encoding and decoding of the data types by the stub has been changed to explicitly use the XSD
types in the message payload.

For example, when the client application calls the proxy, the proxy produces a SOAP request with
an xsd:double (the xsi:type is shown when the soapcpp2 -t option is used):

...
<SOAP-ENV:Body>
<ns2:add>
<a xsi:type="xsd:string">1.0
<b xsi:type="xsd:string">2.0

</ns2:add>
</SOAP-ENV:Body>
...

The service response is:

...
<soap:Body>
<n:addResponse xmlns:n="urn:calc">
<result xsi:type="xsd:double">3.0</result>

</n:addResponse>
</soap:Body>
...

36

The validation of this service response by the stub routine takes place by matching the namespace
names (URIs) that are bound to the xsd namespace prefix. The stub also expects the addResponse

element to be associated with URI urn:calc through the binding of the namespace prefix ns2 in the
namespace mapping table. The service response uses namespace prefix n for the addResponse ele-
ment. This namespace prefix is bound to the same URI urn:calc and therefore the service response
is valid. When the XML is not well formed or does not pass validation, the response is rejected
and a SOAP fault is generated. The validation level can be increased with the SOAP XML STRICT

flag, but this is not advised for SOAP RPC encoded messaging.

7.1.7 How to Change the Response Element Name

There is no standardized convention for the response element name in a SOAP RPC encoded
response message, although it is recommended that the response element name is the method name
ending with “Response”. For example, the response element of add is addResponse.

The response element name can be specified explicitly using a struct or class declaration in the
header file. This name must be qualified by a namespace prefix, just as the operation name should
use a namespace prefix. The struct or class name represents the SOAP response element name used
by the service. Consequently, the output parameter of the service operation must be declared as a
field of the struct or class. The use of a struct or a class for the service response is fully SOAP 1.1
compliant. In fact, the absence of a struct or class indicates to the soapcpp2 tool to automatically
generate a struct for the response which is internally used by a stub.

7.1.8 Example

Reconsider the calculator service operation specification which can be rewritten with an explicit
declaration of a SOAP response element as follows:

// Contents of ”calc.h”:
typedef double xsd double;
struct ns2 addResponse {xsd double result;};
int ns2 add(xsd string a, xsd double b, struct ns2 addResponse &r);

The SOAP request and response messages are the same as before:

...
<SOAP-ENV:Body>
<ns2:add>
<a xsi:type="xsd:string">1.0
<b xsi:type="xsd:string">2.0

</ns2:add>
</SOAP-ENV:Body>
...

The difference is that the service response is required to match the specified addResponse name and
its namespace URI:

37

...
<soap:Body>
<n:addResponse xmlns:n=’urn:calc’>
<result xsi:type="xsd:double">3.0</result>

</n:addResponse>
</soap:Body>
...

This use of a struct or class enables the adaptation of the default SOAP response element name
and/or namespace URI when required.

7.1.9 How to Specify Multiple Output Parameters

The gSOAP soapcpp2 tool compiler uses the convention that the last parameter of the func-
tion prototype declaration of a service operation in a header file is also the only single output
parameter of the method. All other parameters are considered input parameters of the service
operation. To specify a service operation with multiple output parameters, a struct or class

must be declared for the service operation response, see also 7.1.7. The name of the struct or class

must have a namespace prefix, just as the service method name. The fields of the struct or class

are the output parameters of the service operation. Both the order of the input parameters in
the function prototype and the order of the output parameters (the fields in the struct or class)
is not significant. However, the SOAP 1.1 specification states that input and output parameters
may be treated as having anonymous parameter names which requires a particular ordering, see
Section 7.1.13.

7.1.10 Example

As an example, consider a hypothetical service operation getNames with a single input parameter
SSN and two output parameters first and last. This can be specified as:

// Contents of file ”getNames.h”:
int ns3 getNames(char *SSN, struct ns3 getNamesResponse {char *first; char *last;} &r);

The gSOAP soapcpp2 tool takes this header file as input and generates source code for the function
soap call ns3 getNames. When invoked by a client application, the proxy produces the SOAP request:

...
<SOAP-ENV:Envelope ... xmlns:ns3="urn:names" ...>
...
<ns3:getNames>
<SSN>999 99 9999</SSN>
</ns3:getNames>
...

The response by a SOAP service could be:

...
<m:getNamesResponse xmlns:m="urn:names">

38

<first>John</first>
<last>Doe</last>
</m:getNamesResponse>
...

where first and last are the output parameters of the getNames service operation of the service.

As another example, consider a service operation copy with an input parameter and an output
parameter with identical parameter names (this is not prohibited by the SOAP 1.1 protocol). This
can be specified as well using a response struct:

// Content of file ”copy.h”:
int X rox copy name(char *name, struct X rox copy nameResponse {char *name;} &r);

The use of a struct or class for the service operation response enables the declaration of service
operations that have parameters that are passed both as input and output parameters.

The gSOAP soapcpp2 compiler takes the copy.h header file as input and generates the soap call X rox copy name

proxy. When invoked by a client application, the proxy produces the SOAP request:

...
<SOAP-ENV:Envelope ... xmlns:X-rox="urn:copy" ...>
...
<X-rox:copy-name>
<name>SOAP</name>
</X-rox:copy-name>
...

The response by a SOAP copy service could be something like:

...
<m:copy-nameResponse xmlns:m="urn:copy">
<name>SOAP</name>
</m:copy-nameResponse>
...

The name will be parsed and decoded by the proxy and returned in the name field of the struct

X rox copy nameResponse &r parameter.

7.1.11 How to Specify Output Parameters With struct/class Compound Data Types

If the single output parameter of a service operation is a complex data type such as a struct or
class it is necessary to specify the response element of the service operation as a struct or class at
all times. Otherwise, the output parameter will be considered the response element (!), because
of the response element specification convention used by gSOAP, as discussed in 7.1.7.

7.1.12 Example

This is best illustrated with an example. The Flighttracker service by ObjectSpace provides real
time flight information for flights in the air. It requires an airline code and flight number as

39

parameters. The service operation name is getFlightInfo and the method has two string parameters:
the airline code and flight number, both of which must be encoded as xsd:string types. The method
returns a getFlightResponse response element with a return output parameter that is of complex type
FlightInfo. The type FlightInfo is represented by a class in the header file, whose field names correspond
to the FlightInfo accessors:

// Contents of file ”flight.h”:
typedef char *xsd string;
class ns2 FlightInfo
{

public:
xsd string airline;
xsd string flightNumber;
xsd string altitude;
xsd string currentLocation;
xsd string equipment;
xsd string speed;
};
struct ns1 getFlightInfoResponse {ns2 FlightInfo return ;};
int ns1 getFlightInfo(xsd string param1, xsd string param2, struct ns1 getFlightInfoResponse
&r);

The response element ns1 getFlightInfoResponse is explicitly declared and it has one field: return of
type ns2 FlightInfo. Note that return has a trailing underscore to avoid a name clash with the return

keyword, see Section 10.3 for details on the translation of C++ identifiers to XML element names.

The gSOAP soapcpp2 compiler generates the soap call ns1 getFlightInfo proxy. Here is an example
fragment of a client application that uses this proxy to request flight information:

struct soap soap;
...
soap init(&soap);
...
soap call ns1 getFlightInfo(&soap, "testvger.objectspace.com/soap/servlet/rpcrouter",
"urn:galdemo:flighttracker", "UAL", "184", r);

...
struct Namespace namespaces[] =
{
{”SOAP-ENV”, ”http://schemas.xmlsoap.org/soap/envelope/”},
{”SOAP-ENC”,”http://schemas.xmlsoap.org/soap/encoding/”},
{”xsi”, ”http://www.w3.org/2001/XMLSchema-instance”},
{”xsd”, ”http://www.w3.org/2001/XMLSchema”},
{”ns1”, ”urn:galdemo:flighttracker”},
{”ns2”, ”http://galdemo.flighttracker.com”},
{NULL, NULL}

};

When invoked by a client application, the proxy produces the SOAP request:

POST /soap/servlet/rpcrouter HTTP/1.1
Host: testvger.objectspace.com

40

Content-Type: text/xml
Content-Length: 634
SOAPAction: "urn:galdemo:flighttracker"

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ns1="urn:galdemo:flighttracker"
xmlns:ns2="http://galdemo.flighttracker.com"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>
<ns1:getFlightInfo xsi:type="ns1:getFlightInfo">
<param1 xsi:type="xsd:string">UAL</param1>
<param2 xsi:type="xsd:string">184</param2>
</ns1:getFlightInfo>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The Flighttracker service responds with:

HTTP/1.1 200 ok
Date: Thu, 30 Aug 2001 00:34:17 GMT
Server: IBM HTTP Server/1.3.12.3 Apache/1.3.12 (Win32)
Set-Cookie: sesessionid=2GFVTOGC30D0LGRGU2L4HFA;Path=/
Cache-Control: no-cache="set-cookie,set-cookie2"
Expires: Thu, 01 Dec 1994 16:00:00 GMT
Content-Length: 861
Content-Type: text/xml; charset=utf-8
Content-Language: en

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<SOAP-ENV:Body>
<ns1:getFlightInfoResponse xmlns:ns1="urn:galdemo:flighttracker"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<return xmlns:ns2="http://galdemo.flighttracker.com" xsi:type="ns2:FlightInfo">
<equipment xsi:type="xsd:string">A320</equipment>
<airline xsi:type="xsd:string">UAL</airline>
<currentLocation xsi:type="xsd:string">188 mi W of Lincoln, NE</currentLocation>
<altitude xsi:type="xsd:string">37000</altitude>
<speed xsi:type="xsd:string">497</speed>
<flightNumber xsi:type="xsd:string">184</flightNumber>
</return>
</ns1:getFlightInfoResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

41

The proxy returns the service response in variable r of type struct ns1 getFlightInfoResponse and this
information can be displayed by the client application with the following code fragment:

cout << r.return .equipment << ” flight ” << r.return .airline << r.return .flightNumber
<< ” traveling ” << r.return .speed << ” mph ” << ” at ” << r.return .altitude
<< ” ft, is located ” << r.return .currentLocation << endl;

This code displays the service response as:

A320 flight UAL184 traveling 497 mph at 37000 ft, is located 188 mi W of Lincoln,
NE

Note: the flight tracker service is no longer available since 9/11/2001. It is kept in the documen-
tation as an example to illustrate the use of structs/classes and response types.

7.1.13 How to Specify Anonymous Parameter Names

The SOAP RPC encoding protocol allows parameter names to be anonymous. That is, the name(s)
of the output parameters of a service operation are not strictly required to match a client’s view
of the parameters names. Also, the input parameter names of a service operation are not strictly
required to match a service’s view of the parameter names. The gSOAP soapcpp2 compiler can
generate stub and skeleton routines that support anonymous parameters. Parameter names are
implicitly anonymous by omitting the parameter names in the function prototype of the service
operation. For example:

// Contents of ”calc.h”:
typedef double xsd double;
int ns2 add(xsd string, xsd double, xsd double &);

To make parameter names explicitly anonymous on the receiving side (client or service), the pa-
rameter names should start with an underscore () in the function prototype in the header file.

For example:

// Contents of ”calc.h”:
typedef double xsd double;
int ns2 add(xsd string a, xsd double b, xsd double & return);

In this example, the a, b, and return are anonymous parameters. As a consequence, the service
response to a request made by a client created with gSOAP using this header file specification may
include any name for the output parameter in the SOAP payload. The input parameters may also
be anonymous. This affects the implementation of Web services in gSOAP and the matching of
parameter names by the service.

Caution: when anonymous parameter names are used, the order of the parameters in the function
prototype of a service operation is significant.

42

7.1.14 How to Specify a Method with No Input Parameters

To specify a service operation that has no input parameters, just provide a function prototype with
one parameter which is the output parameter (some C/C++ compilers will not compile and com-
plain about an empty struct: use compile flag -DWITH NOEMPTYSTRUCT to compile the generated
code for these cases). This struct is generated by gSOAP to contain the SOAP request message.
To fix this, provide one input parameter of type void* (gSOAP can not serialize void* data). For
example:

struct ns3 SOAPService
{

public:
int ID;
char *name;
char *owner;
char *description;
char *homepageURL;
char *endpoint;
char *SOAPAction;
char *methodNamespaceURI;
char *serviceStatus;
char *methodName;
char *dateCreated;
char *downloadURL;
char *wsdlURL;
char *instructions;
char *contactEmail;
char *serverImplementation;
};
struct ArrayOfSOAPService {struct ns3 SOAPService * ptr; int size;};
int ns getAllSOAPServices(void * , struct ArrayOfSOAPService & return);

The ns getAllSOAPServices method has one void* input parameter which is ignored by the serializer
to produce the request message.

Most C/C++ compilers allow empty structs and therefore the void* parameter is not required.

7.1.15 How to Specify a Method with No Output Parameters

To specify a service operation that has no output parameters, just define a function prototype with
a response struct that is empty. For example:

enum ns event { off, on, stand by };
int ns signal(enum ns event in, struct ns signalResponse { } *out);

Since the response struct is empty, no output parameters are specified.

Some SOAP resources refer to SOAP RPC with empty responses as one way SOAP messaging.
However, we refer to one-way massaging by asynchronous explicit send and receive operations as
described in Section 7.3. The latter view of one-way SOAP messaging is also in line with Basic
Profile 1.0.

43

7.2 How to Build SOAP/XML Web Services

The gSOAP soapcpp2 compiler generates skeleton routines in C++ source form for each of the
service operations specified as function prototypes in the header file processed by the gSOAP
soapcpp2 compiler. The skeleton routines can be readily used to implement the service operations
in a new SOAP Web service. The compound data types used by the input and output parameters of
service operations must be declared in the header file, such as structs, classes, arrays, and pointer-
based data structures (graphs) that are used as the data types of the parameters of a service
operation. The gSOAP soapcpp2 compiler automatically generates serializers and deserializers for
the data types to enable the generated skeleton routines to encode and decode the contents of
the parameters of the service operations. The gSOAP soapcpp2 compiler also generates a service
operation request dispatcher routine that will serve requests by calling the appropriate skeleton
when the SOAP service application is installed as a CGI application on a Web server.

7.2.1 Example

The following example specifies three service operations to be implemented by a new SOAP Web
service:

// Contents of file ”calc.h”:
typedef double xsd double;
int ns add(xsd double a, xsd double b, xsd double &result);
int ns sub(xsd double a, xsd double b, xsd double &result);
int ns sqrt(xsd double a, xsd double &result);

The add and sub methods are intended to add and subtract two double floating point numbers
stored in input parameters a and b and should return the result of the operation in the result output
parameter. The qsrt method is intended to take the square root of input parameter a and to return
the result in the output parameter result. The xsd double type is recognized by the gSOAP soapcpp2

compiler as the xsd:double XSD Schema data type. The use of typedef is a convenient way to
associate primitive C types with primitive XML Schema data types.

To generate the skeleton routines, the gSOAP soapcpp2 compiler is invoked from the command line
with:

> soapcpp2 calc.h

The compiler generates the skeleton routines for the add, sub, and sqrt service operations specified
in the calc.h header file. The skeleton routines are respectively, soap serve ns add, soap serve ns sub,
and soap serve ns sqrt and saved in the file soapServer.cpp. The generated file soapC.cpp contains
serializers and deserializers for the skeleton. The compiler also generates a service dispatcher:
the soap serve function handles client requests on the standard input stream and dispatches the
service operation requests to the appropriate skeletons to serve the requests. The skeleton in turn
calls the service operation implementation function. The function prototype of the service operation
implementation function is specified in the header file that is input to the gSOAP soapcpp2 compiler.

Here is an example Calculator service application that uses the generated soap serve routine to
handle client requests:

44

// Contents of file ”calc.cpp”:
#include ”soapH.h”
#include <math.h> // for sqrt()
int main()
{

return soap serve(soap new()); // use the service operation request dispatcher
}
// Implementation of the ”add” service operation:
int ns add(struct soap *soap, double a, double b, double &result)
{

result = a + b;
return SOAP OK;
}
// Implementation of the ”sub” service operation:
int ns sub(struct soap *soap, double a, double b, double &result)
{

result = a - b;
return SOAP OK;
}
// Implementation of the ”sqrt” service operation:
int ns sqrt(struct soap *soap, double a, double &result)
{

if (a >= 0)
{

result = sqrt(a);
return SOAP OK;

}
else

return soap receiver fault(soap, ”Square root of negative number”, ”I can only take the square
root of a non-negative number”);
}
// As always, a namespace mapping table is needed:
struct Namespace namespaces[] =
{ // {”ns-prefix”, ”ns-name”}
{”SOAP-ENV”, ”http://schemas.xmlsoap.org/soap/envelope/”},
{”SOAP-ENC”, ”http://schemas.xmlsoap.org/soap/encoding/”},
{”xsi”, ”http://www.w3.org/2001/XMLSchema-instance”},
{”xsd”, ”http://www.w3.org/2001/XMLSchema”},
{”ns”, ”urn:simple-calc”}, // bind ”ns” namespace prefix
{NULL, NULL}

};

Note that the service operations have an extra input parameter which is a pointer to the gSOAP
runtime context. The implementation of the service operations MUST return a SOAP error code.
The code SOAP OK denotes success, while SOAP FAULT denotes an exception with details that can be
defined by the user. The exception description can be assigned to the soap->fault->faultstring string
and details can be assigned to the soap->fault->detail string. This is SOAP 1.1 specific. SOAP
1.2 requires the soap->fault->SOAP ENV Reason and the soap->fault->SOAP ENV Detail strings to
be assigned. Better is to use the soap receiver fault function that allocates a fault struct and sets
the SOAP Fault string and details regardless of the SOAP 1.1 or SOAP 1.2 version used. The

45

soap receiver fault function returns SOAP FAULT, i.e. an application-specific fault. The fault exception
will be passed on to the client of this service.

This service application can be readily installed as a CGI application. The service description
would be:

Endpoint URL: the URL of the CGI application
SOAP action: ”” (2 quotes)
Remote method namespace: urn:simple-calc
Remote method name: add

Input parameters: a of type xsd:double and b of type xsd:double
Output parameter: result of type xsd:double

Remote method name: sub
Input parameters: a of type xsd:double and b of type xsd:double
Output parameter: result of type xsd:double

Remote method name: sqrt
Input parameter: a of type xsd:double
Output parameter: result of type xsd:double or a SOAP Fault

The soapcpp2 compile generates a WSDL file for this service, see Section 7.2.9.

Unless the CGI application inspects and checks the environment variable SOAPAction which contains
the SOAP action request by a client, the SOAP action is ignored by the CGI application. SOAP
actions are specific to the SOAP protocol and provide a means for routing requests and for security
reasons (e.g. firewall software can inspect SOAP action headers to grant or deny the SOAP request.
Note that this requires the SOAP service to check the SOAP action header as well to match it with
the service operation.)

The header file input to the gSOAP soapcpp2 compiler does not need to be modified to generate
client stubs for accessing this service. Client applications can be developed by using the same
header file as for which the service application was developed. For example, the soap call ns add

stub routine is available from the soapClient.cpp file after invoking the gSOAP soapcpp2 compiler on
the calc.h header file. As a result, client and service applications can be developed without the need
to know the details of the SOAP encoding used.

7.2.2 MSVC++ Builds

• Win32 builds need winsock2 (MS Visual C++ ”ws2 32.lib”) To do this in Visual C++ 6.0,
go to “Project”, “settings”, select the “Link” tab (the project file needs to be selected in the
file view) and add ”ws2 32.lib” to the ”Object/library modules” entry.

• Use files with extension .cpp only (don’t mix .c with .cpp).

• Turn pre-compiled headers off.

• When creating a new project, you can specify a custom build step to automatically invoke
the gSOAP soapcpp2 compiler on a gSOAP header file. In this way you can incrementally
build a new service by adding new operations and data types to the header file. To specify
a custom build step, select the ”Project” menu item ”Settings” and select the header file in
the File view pane. Select the ”Custom Build” tab and enter ’soapcpp2.exe ”$(inputPath)”’ in

46

the ”Command” pane. Enter ’soapStub.h soapH.h soapC.cpp soapClient.cpp soapServer.cpp’. Don’t
forget to add the soapXYZProxy.h soapXYZObject.h files that are generated for C++ class proxies
and server objects named XYZ. Click ”OK”. Run soapcpp2 once to generate these files (you
can simply do this by selecting your header file and select ”Compile”). Add the files to your
project. Each time you make a change to the header file, the project sources are updated
automatically.

• You may want to use the WinInet interface available in the mod gsoap directory of the gSOAP
package to simplify Internet access and deal with encryption, proxies, and authentication.
API instructions are included in the source.

• For the PocketPC, run the wsdl2h WSDL parser with option -s to prevent the generation of
STL code. In addition, time t serialization is not supported, which means that you should add
the following line to typemap.dat indicating a mapping of xsd dateTime to char*: xsd dateTime

= | char* | char*.

7.2.3 How to Create a Stand-Alone Server

The deployment of a Web service as a CGI application is an easy means to provide your service
on the Internet. gSOAP services can also run as stand-alone services on any port by utilizing
the built-in HTTP and TCP/IP stacks. The stand-alone services can be run on port 80 thereby
providing Web server capabilities restricted to SOAP RPC.

To create a stand-alone service, only the main routine of the service needs to be modified as follows.
Instead of just calling the soap serve routine, the main routine is changed into:

int main()
{

struct soap soap;
int m, s; // master and slave sockets
soap init(&soap);
m = soap bind(&soap, "machine.genivia.com", 18083, 100);
if (m < 0)

soap print fault(&soap, stderr);
else
{

fprintf(stderr, "Socket connection successful: master socket = %d\n", m);
for (int i = 1; ; i++)
{

s = soap accept(&soap);
if (s < 0)
{

soap print fault(&soap, stderr);
break;
}
fprintf(stderr, "%d: accepted connection from IP=%d.%d.%d.%d socket=%d", i,

(soap.ip>>24)&0xFF, (soap.ip>>16)&0xFF, (soap.ip>>8)&0xFF, soap.ip&0xFF, s);
if (soap serve(&soap) != SOAP OK) // process RPC request

soap print fault(&soap, stderr); // print error

47

fprintf(stderr, "request served\n");
soap destroy(&soap); // clean up class instances
soap end(&soap); // clean up everything and close socket

}
}
soap done(&soap); // close master socket and detach context
}

The soap serve dispatcher handles one request or multiple requests when HTTP keep-alive is enabled
(with the SOAP IO KEEPALIVE flag see Section 19.11).

The gSOAP functions that are frequently used for server-side coding are:

Function Description
soap new() Allocates and Initializes gSOAP context
soap init(struct soap *soap) Initializes a stack-allocated gSOAP context (re-

quired once)
soap bind(struct soap *soap, char *host, int port,
int backlog)

Returns master socket (backlog = max. queue size
for requests). When host==NULL: host is the ma-
chine on which the service runs

soap accept(struct soap *soap) Returns slave socket
soap end(struct soap *soap) Clean up deserialized data (except class instances)

and temporary data
soap free temp(struct soap *soap) Clean up temporary data only
soap destroy(struct soap *soap) Clean up deserialized class instances (note: this

function will be renamed with option -n
soap done(struct soap *soap) Reset and detach context: close master/slave

sockets and remove callbacks
soap free(struct soap *soap) Detach and deallocate context (soap new())

The host name in soap bind may be NULL to indicate that the current host should be used.

The soap.accept timeout attribute of the gSOAP runtime context specifies the timeout value for a
non-blocking soap accept(&soap) call. See Section 19.19 for more details on timeout management.

See Section 9.13 for more details on memory management.

A client application connects to this stand-alone service with the endpoint machine.genivia.com:18083.
A client may use the http:// prefix. When absent, no HTTP header is sent and no HTTP-based
information will be communicated to the service.

7.2.4 How to Create a Multi-Threaded Stand-Alone Service

Multi-threading a Web Service is essential when the response times for handling requests by the
service are (potentially) long or when keep-alive is enabled, see Section 19.11. In case of long
response times, the latencies introduced by the unrelated requests may become prohibitive for a
successful deployment of a stand-alone service. When HTTP keep-alive is enabled, a client may
not close the socket on time, thereby preventing other clients from connecting.

gSOAP 2.0 and higher is thread safe and supports the implementation of multi-threaded stand-alone
services in which a thread is used to handle a request.

48

The following example illustrates the use of threads to improve the quality of service by handling
new requests in separate threads:

#include ”soapH.h”
#include <pthread.h>
#define BACKLOG (100) // Max. request backlog
int main(int argc, char **argv)
{

struct soap soap;
soap init(&soap);
if (argc < 2) // no args: assume this is a CGI application
{

soap serve(&soap); // serve request, one thread, CGI style
soap destroy(&soap); // dealloc C++ data
soap end(&soap); // dealloc data and clean up

}
else
{

soap.send timeout = 60; // 60 seconds
soap.recv timeout = 60; // 60 seconds
soap.accept timeout = 3600; // server stops after 1 hour of inactivity
soap.max keep alive = 100; // max keep-alive sequence
void *process request(void*);
struct soap *tsoap;
pthread t tid;
int port = atoi(argv[1]); // first command-line arg is port
SOAP SOCKET m, s;
m = soap bind(&soap, NULL, port, BACKLOG);
if (!soap valid socket(m))

exit(1);
fprintf(stderr, "Socket connection successful %d\n", m);
for (;;)
{

s = soap accept(&soap);
if (!soap valid socket(s))
{

if (soap.errnum)
{

soap print fault(&soap, stderr);
exit(1);

}
fprintf(stderr, "server timed out\n");
break;
}
fprintf(stderr, "Thread %d accepts socket %d connection from IP %d.%d.%d.%d\n",

i, s, (soap.ip>>24)&0xFF, (soap.ip>>16)&0xFF, (soap.ip>>8)&0xFF, soap.ip&0xFF);
tsoap = soap copy(&soap); // make a safe copy
if (!tsoap)

break;
pthread create(&tid, NULL, (void*(*)(void*))process request, (void*)tsoap);

}

49

}
soap done(&soap); // detach soap struct
return 0;
}
void *process request(void *soap)
{

pthread detach(pthread self());
soap serve((struct soap*)soap);
soap destroy((struct soap*)soap); // dealloc C++ data
soap end((struct soap*)soap); // dealloc data and clean up
soap done((struct soap*)soap); // detach soap struct
free(soap);
return NULL;
}

Note: the code does not wait for threads to join the main thread upon program termination.

The soap serve dispatcher handles one request or multiple requests when HTTP keep-alive is set
with SOAP IO KEEPALIVE. The soap.max keep alive value can be set to the maximum keep-alive calls
allowed, which is important to avoid a client from holding a thread indefinitely. The send and receive
timeouts are set to avoid (intentionally) slow clients from holding a socket connection too long. The
accept timeout is used to let the server terminate automatically after a period of inactivity.

The following example uses a pool of servers to limit the machine’s resource utilization:

#include ”soapH.h”
#include <pthread.h>
#define BACKLOG (100) // Max. request backlog
#define MAX THR (10) // Max. threads to serve requests
int main(int argc, char **argv)
{

struct soap soap;
soap init(&soap);
if (argc < 2) // no args: assume this is a CGI application
{

soap serve(&soap); // serve request, one thread, CGI style
soap destroy(&soap); // dealloc C++ data
soap end(&soap); // dealloc data and clean up

}
else
{

struct soap *soap thr[MAX THR]; // each thread needs a runtime context
pthread t tid[MAX THR];
int port = atoi(argv[1]); // first command-line arg is port
SOAP SOCKET m, s;
int i;
m = soap bind(&soap, NULL, port, BACKLOG);
if (!soap valid socket(m))

exit(1);
fprintf(stderr, "Socket connection successful %d\n", m);
for (i = 0; i < MAX THR; i++)

soap thr[i] = NULL;

50

for (;;)
{

for (i = 0; i < MAX THR; i++)
{

s = soap accept(&soap);
if (!soap valid socket(s))
{

if (soap.errnum)
{

soap print fault(&soap, stderr);
continue; // retry

}
else
{

fprintf(stderr, "Server timed out\n");
break;

}
}
fprintf(stderr, "Thread %d accepts socket %d connection from IP %d.%d.%d.%d\n",

i, s, (soap.ip>>24)&0xFF, (soap.ip>>16)&0xFF, (soap.ip>>8)&0xFF, soap.ip&0xFF);
if (!soap thr[i]) // first time around
{

soap thr[i] = soap copy(&soap);
if (!soap thr[i])
exit(1); // could not allocate

}
else// recycle soap context
{

pthread join(tid[i], NULL);
fprintf(stderr, ”Thread %d completed\n”, i);
soap destroy(soap thr[i]); // deallocate C++ data of old thread
soap end(soap thr[i]); // deallocate data of old thread

}
soap thr[i]->socket = s; // new socket fd
pthread create(&tid[i], NULL, (void*(*)(void*))soap serve, (void*)soap thr[i]);
}

}
for (i = 0; i < MAX THR; i++)

if (soap thr[i])
{

soap done(soap thr[i]); // detach context
free(soap thr[i]); // free up
}

}
return 0;
}

The following functions can be used to setup a gSOAP runtime context (struct soap):

51

Function
Description

soap init(struct soap *soap) Initializes a runtime context (required only once)
struct soap *soap new() Allocates, initializes, and returns a pointer to a runtime

context
struct soap *soap copy(struct soap *soap) Allocates a new runtime context and copies a context (deep

copy, i.e. the new context does not share any data with the
other context)

the argument context such that the new context does not share data with the argument context
soap done(struct soap *soap) Reset, close communications, and remove callbacks

A new context is initiated for each thread to guarantee exclusive access to runtime contexts.

For clean termination of the server, the master socket can be closed and callbacks removed with
soap done(struct soap *soap).

The advantage of the code shown above is that the machine cannot be overloaded with requests,
since the number of active services is limited. However, threads are still started and terminated.
This overhead can be eliminated using a queue of requests (open sockets) as is shown in the code
below.

#include ”soapH.h”
#include <pthread.h>
#define BACKLOG (100) // Max. request backlog
#define MAX THR (10) // Size of thread pool
#define MAX QUEUE (1000) // Max. size of request queue
SOAP SOCKET queue[MAX QUEUE]; // The global request queue of sockets
int head = 0, tail = 0; // Queue head and tail
void *process queue(void*);
int enqueue(SOAP SOCKET);
SOAP SOCKET dequeue();
pthread mutex t queue cs;
pthread cond t queue cv;
int main(int argc, char **argv)
{

struct soap soap;
soap init(&soap);
if (argc < 2) // no args: assume this is a CGI application
{

soap serve(&soap); // serve request, one thread, CGI style
soap destroy(&soap); // dealloc C++ data
soap end(&soap); // dealloc data and clean up

}
else
{

struct soap *soap thr[MAX THR]; // each thread needs a runtime context
pthread t tid[MAX THR];
int port = atoi(argv[1]); // first command-line arg is port
SOAP SOCKET m, s;
int i;
m = soap bind(&soap, NULL, port, BACKLOG);
if (!soap valid socket(m))

52

exit(1);
fprintf(stderr, "Socket connection successful %d\n", m);
pthread mutex init(&queue cs, NULL);
pthread cond init(&queue cv, NULL);
for (i = 0; i < MAX THR; i++)
{

soap thr[i] = soap copy(&soap);
fprintf(stderr, "Starting thread %d\n", i);
pthread create(&tid[i], NULL, (void*(*)(void*))process queue, (void*)soap thr[i]);

}
for (;;)
{

s = soap accept(&soap);
if (!soap valid socket(s))
{

if (soap.errnum)
{

soap print fault(&soap, stderr);
continue; // retry

}
else
{

fprintf(stderr, "Server timed out\n");
break;

}
}
fprintf(stderr, "Thread %d accepts socket %d connection from IP %d.%d.%d.%d\n",

i, s, (soap.ip>>24)&0xFF, (soap.ip>>16)&0xFF, (soap.ip>>8)&0xFF, soap.ip&0xFF);
while (enqueue(s) == SOAP EOM)

sleep(1);
}
for (i = 0; i < MAX THR; i++)
{

while (enqueue(SOAP INVALID SOCKET) == SOAP EOM)
sleep(1);

}
for (i = 0; i < MAX THR; i++)
{

fprintf(stderr, "Waiting for thread %d to terminate... ", i);
pthread join(tid[i], NULL);
fprintf(stderr, "terminated\n");
soap done(soap thr[i]);
free(soap thr[i]);

}
pthread mutex destroy(&queue cs);
pthread cond destroy(&queue cv);

}
soap done(&soap);
return 0;
}
void *process queue(void *soap)

53

{
struct soap *tsoap = (struct soap*)soap;
for (;;)
{

tsoap->socket = dequeue();
if (!soap valid socket(tsoap->socket))

break;
soap serve(tsoap);
soap destroy(tsoap);
soap end(tsoap);
fprintf(stderr, "served\n");

}
return NULL;
}
int enqueue(SOAP SOCKET sock)
{

int status = SOAP OK;
int next;
pthread mutex lock(&queue cs);
next = tail + 1;
if (next >= MAX QUEUE)

next = 0;
if (next == head)

status = SOAP EOM;
else
{

queue[tail] = sock;
tail = next;

}
pthread cond signal(&queue cv);
pthread mutex unlock(&queue cs);
return status;
}
SOAP SOCKET dequeue()
{

SOAP SOCKET sock;
pthread mutex lock(&queue cs);
while (head == tail) pthread cond wait(&queue cv, &queue cs);
sock = queue[head++];
if (head >= MAX QUEUE)

head = 0;
pthread mutex unlock(&queue cs);
return sock;
}

Note: the plugin/threads.h and plugin/threads.c code can be used for a portable implementation.
Instead of POSIX calls, use MUTEX LOCK, MUTEX UNLOCK, and COND WAIT. These are wrappers
for Win API calls or POSIX calls.

54

7.2.5 How to Pass Application Data to Service Methods

The void *soap.user field can be used to pass application data to service methods. This field should
be set before the soap serve() call. The service method can access this field to use the application-
dependent data. The following example shows how a non-static database handle is initialized and
passed to the service methods:

{ ...
struct soap soap;
database handle type database handle;
soap init(&soap); soap.user = (void*)database handle;
...
soap serve(&soap); // call the service operation dispatcher to handle request
...
}
int ns myMethod(struct soap *soap, ...)
{ ...

fetch((database handle type*)soap->user);
// get data ...

return SOAP OK;
}

Another way to pass application data around in a more organized way is accomplished with plugins,
see Section 19.38.

7.2.6 Web Service Implementation Aspects

The same client header file specification issues apply to the specification and implementation of a
SOAP Web service. Refer to

• 7.1.2 for namespace considerations.

• 7.1.5 for an explanation on how to change the encoding of the primitive types.

• 7.1.7 for a discussion on how the response element format can be controlled.

• 7.1.9 for details on how to pass multiple output parameters from a service operation.

• 7.1.11 for passing complex data types as output parameters.

• 7.1.13 for anonymizing the input and output parameter names.

7.2.7 How to Generate C++ Server Object Classes

Server object classes for C++ server applications are automatically generated by the gSOAP
soapcpp2 compiler.

There are two modes for generating classes. Use soapcpp2 option -i (or -j) to generate improved
class definitions where the class’ member functions are the service methods.

55

The older examples (without the use of soapcpp2 option -i and -j) use a C-like approach with globally
defined service methods, which is illustated here with a calculator example:

// Content of file "calc.h":
//gsoap ns service name: Calculator
//gsoap ns service protocol: SOAP
//gsoap ns service style: rpc
//gsoap ns service encoding: encoded
//gsoap ns service location: http://www.cs.fsu.edu/˜engelen/calc.cgi
//gsoap ns schema namespace: urn:calc
//gsoap ns service method-action: add ””
int ns add(double a, double b, double &result);
int ns sub(double a, double b, double &result);
int ns mul(double a, double b, double &result);
int ns div(double a, double b, double &result);

The first three directives provide the service name which is used to name the service class, the
service location (endpoint), and the schema. The fourth directive defines the optional SOAPAction
for the method, which is a string associated with SOAP 1.1 operations. Compilation of this header
file with soapcpp2 -i creates a new file soapCalculatorObject.h with the following contents:

#include ”soapH.h”
class CalculatorObject : public soap
{ public:

Calculator() { ... };
˜Calculator() { ... };
int serve() { return soap serve(this); };
};

This generated server object class can be included into a server application together with the
generated namespace table as shown in this example:

#include ”soapCalculatorObject.h” // get server object
#include ”Calculator.nsmap” // get namespace bindings
int main()
{

CalculatorObject c;
return c.serve(); // calls soap serve to serve as CGI application (using stdin/out)
}
// C-style global functions implement server operations (soapcpp2 w/o option -i)
int ns add(struct soap *soap, double a, double b, double &result)
{

result = a + b;
return SOAP OK;
}
... sub(), mul(), and div() implementations ...

You can use soapcpp2 option -n together with -p to create a local namespace table to avoid link
conflict when you need to combine multiple tables and/or multiple servers, see also Sections 9.1

56

and 19.36, and you can use a C++ code namespace to create a namespace qualified server object
class, see Section 19.35.

The example above serves requests over stdin/out. Use the bind and accept calls to create a
stand-alone server to service inbound requests over sockets, see also 7.2.3.

A better alternative is to use the soapcpp2 option -i. The C++ proxy and server objects are
derived from the soap context struct, which simplifies the proxy invocation and service operation
implementations.

Compilation of the above header file with the gSOAP compiler soapcpp2 option -i creates new files
soapCalculatorService.h and soapCalculatorService.cpp (rather than the C-style soapServer.cpp).

This generated server object class can be included into a server application together with the
generated namespace table as shown in this example:

#include ”soapCalculatorService.h” // get server object
#include ”Calculator.nsmap” // get namespace bindings
int main()
{

soapCalculatorService c;
return c.serve(); // calls soap serve to serve as CGI application (using stdin/out)
}
// The ’add’ service method (soapcpp2 w/ option -i)
int soapCalculatorService::add(double a, double b, double &result)
{

result = a + b;
return SOAP OK;
}
... sub(), mul(), and div() implementations ...

Note that the service operation does not need a prefix (ns) and there is no soap context struct
passed to the service operation since the service object itself is the context (it is derived from the
soap struct).

7.2.8 How to Chain C++ Server Classes to Accept Messages on the Same Port

When combining multiple services into one application, you can run wsdl2h on multiple WSDLs to
generate the single all-inclusive service definitions header file. This header file is then processed
with soapcpp2, for example to generate server class objects with option -i and -q to separate the
service codes with C++ namespaces, see Section 19.35.

This works well, but the problem is that we end up with multiple classes, each for a collection of
service operations the class is supposed to implement. But what if we need to provide one endpoint
port for all services and operations? In this case invoking the server object’s serve method is not
sufficient, since only one service can accept requests while we want multiple services to listen to
the same port.

The approach is to chain the service dispatchers, as shown below:

Abc::soapABCService abc; // generated with soapcpp2 -i -S -qAbc
Uvw::soapUVWService uvw; // generated with soapcpp2 -i -S -qUvw

57

Xyz::soapXYZService xyz; // generated with soapcpp2 -i -S -qXyz
...
abc.bind(NULL, 8080, 100);
...
abc.accept();
// when using SSL: ssl accept(&abc);
...
if(soap begin serve(&abc)) // available in 2.8.2 and later

abc.soap stream fault(std::cerr);
elseif (abc.dispatch() == SOAP NO METHOD)
{

soap copy stream(&uvw, &abc);
if (uvw.dispatch() == SOAP NO METHOD)
{

soap copy stream(&xyz, &uvw);
if (xyz.dispatch())
{

soap send fault(&xyz); // send fault to client
xyz.soap stream fault(std::cerr);

}
soap free stream(&xyz); // free the copy
xyz.destroy();

}
else
{

soap send fault(&uvw); // send fault to client
uvw.soap stream fault(std::cerr);

}
soap free stream(&uvw); // free the copy
uvw.destroy();
}
else

abc.soap stream fault(std::cerr);
abc.destroy();
...

The dispatch method parses the SOAP/XML request and invokes the service operations, unless there
is no matching operation and SOAP NO METHOD is returned. The soap copy stream ensures that the
service object uses the currently open socket. The copied streams are freed with soap free stream. Do
not enable keep-alive support, as the socket may stay open indefinitely afterwards as a consequence.
Also, the dispatch method does not send a fault to the client, which has to be explicitly done with
the soap send fault operation when an error occurs.

In this way, multiple services can be chained to accept messages on the same port. This approach
also works with SSL for HTTPS services.

However, this approach is not recommended for certain plugins, because plugins must be registered
with all service objects and some plugins require state information to be used across the service
objects, which will add significantly to the complexity.

When plugin complications arise, it is best to have all services share the same context. This means
that soapcpp2 option -j should be used instead of option -i. Each service class has a pointer member

58

to a soap struct context. This member pointer should point to the same soap context.

With option -j and -q the code to chain the services is as follows, based on a single struct soap engine
context:

struct soap *soap = soap new();
Abc::soapABCService abc(soap); // generated with soapcpp2 -j -S -qAbc
Uvw::soapUVWService uvw(soap); // generated with soapcpp2 -j -S -qUvw
Xyz::soapXYZService xyz(soap); // generated with soapcpp2 -j -S -qXyz

soap bind(soap, NULL, 8080, 100);
soap accept(soap);
if (soap begin serve(soap))

... error
else if (abc.dispatch() == SOAP NO METHOD)
{

if (uvw.dispatch() == SOAP NO METHOD)
{

if (xyz.dispatch() == SOAP NO METHOD)
... error

}
}
soap destroy(soap);
soap end(soap);
soap free(soap); // only safe when abc, uvw, xyz are also deleted

7.2.9 How to Generate WSDL Service Descriptions

The gSOAP stub and skeleton compiler soapcpp2 generates WSDL (Web Service Description Lan-
guage) service descriptions and XML Schema files when processing a header file. The tool produces
one WSDL file for a set of service operations, which must be provided. The names of the function
prototypes of the service operations must use the same namespace prefix and the namespace prefix
is used to name the WSDL file. If multiple namespace prefixes are used to define service operations,
multiple WSDL files will be created and each file describes the set of service operations belonging
to a namespace prefix.

In addition to the generation of the ns.wsdl file, a file with a namespace mapping table is generated
by the gSOAP compiler. An example mapping table is shown below:

struct Namespace namespaces[] =
{
{”SOAP-ENV”, ”http://schemas.xmlsoap.org/soap/envelope/”},
{”SOAP-ENC”, ”http://schemas.xmlsoap.org/soap/encoding/”},
{”xsi”, ”http://www.w3.org/2001/XMLSchema-instance”, ḧttp://www.w3.org/*/XMLSchema-

instance”},
{”xsd”, ”http://www.w3.org/2001/XMLSchema”, ḧttp://www.w3.org/*/XMLSchema”},
{”ns”, ”http://tempuri.org”},
{NULL, NULL}

};

59

This file can be incorporated in the client/service application, see Section 10.4 for details on names-
pace mapping tables.

To deploy a Web service, copy the compiled CGI service application to the designated CGI direc-
tory of your Web server. Make sure the proper file permissions are set (chmod 755 calc.cgi for
Unix/Linux). You can then publish the WSDL file on the Web by placing it in the appropriate
Web server directory.

The gSOAP soapcpp2 compiler also generates XML Schema files for all C/C++ complex types
(e.g. structs and classes) when declared with a namespace prefix. These files are named ns.xsd,
where ns is the namespace prefix used in the declaration of the complex type. The XML Schema
files do not have to be published as the WSDL file already contains the appropriate XML Schema
definitions.

To customize the WSDL output, it is essential to use //gsoap directives to declare the service name,
the endpoint port, and namespace:

//gsoap ns service name: example
//gsoap ns servire port: http://www.mydomain.com/example
//gsoap ns service namespace: urn:example

These are minimal settings. More details and settings for the service operations should be declared
as well. See Section 19.2 for more details.

7.2.10 Example

For example, suppose the following methods are defined in the header file:

typedef double xsd double;
int ns add(xsd double a, xsd double b, xsd double &result);
int ns sub(xsd double a, xsd double b, xsd double &result);
int ns sqrt(xsd double a, xsd double &result);

Then, one WSDL file will be created with the file name ns.wsdl that describes all three service
operations:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="Service"
xmlns="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://location/Service.wsdl"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:WSDL="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
xmlns:tns="http://location/Service.wsdl"
xmlns:ns="http://tempuri.org">

<types>
<schema

60

xmlns="http://www.w3.org/2000/10/XMLSchema"
targetNamespace="http://tempuri.org"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">
<complexType name="addResponse">
<all>
<element name="result" type="double" minOccurs="0" maxOccurs="1"/>

</all>
<anyAttribute namespace="##other"/>

</complexType>
<complexType name="subResponse">
<all>
<element name="result" type="double" minOccurs="0" maxOccurs="1"/>

</all>
<anyAttribute namespace="##other"/>

</complexType>
<complexType name="sqrtResponse">
<all>
<element name="result" type="double" minOccurs="0" maxOccurs="1"/>

</all>
<anyAttribute namespace="##other"/>

</complexType>
</schema>

</types>
<message name="addRequest">
<part name="a" type="xsd:double"/>
<part name="b" type="xsd:double"/>

</message>
<message name="addResponse">
<part name="result" type="xsd:double"/>

</message>
<message name="subRequest">
<part name="a" type="xsd:double"/>
<part name="b" type="xsd:double"/>

</message>
<message name="subResponse">
<part name="result" type="xsd:double"/>

</message>
<message name="sqrtRequest">
<part name="a" type="xsd:double"/>

</message>
<message name="sqrtResponse">
<part name="result" type="xsd:double"/>

</message>
<portType name="ServicePortType">
<operation name="add">
<input message="tns:addRequest"/>
<output message="tns:addResponse"/>

</operation>
<operation name="sub">
<input message="tns:subRequest"/>

61

<output message="tns:subResponse"/>
</operation>
<operation name="sqrt">
<input message="tns:sqrtRequest"/>
<output message="tns:sqrtResponse"/>

</operation>
</portType>
<binding name="ServiceBinding" type="tns:ServicePortType">
<SOAP:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="add">
<SOAP:operation soapAction="http://tempuri.org#add"/>
<input>
<SOAP:body use="encoded" namespace="http://tempuri.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>

<SOAP:body use="encoded" namespace="http://tempuri.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>
<operation name="sub">
<SOAP:operation soapAction="http://tempuri.org#sub"/>
<input>

<SOAP:body use="encoded" namespace="http://tempuri.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>

<SOAP:body use="encoded" namespace="http://tempuri.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>
<operation name="sqrt">
<SOAP:operation soapAction="http://tempuri.org#sqrt"/>
<input>

<SOAP:body use="encoded" namespace="http://tempuri.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>

<SOAP:body use="encoded" namespace="http://tempuri.org"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>

</binding>
<service name="Service">
<port name="ServicePort" binding="tns:ServiceBinding">
<SOAP:address location="http://location/Service.cgi"/>

</port>
</service>
</definitions>

62

The above uses all default settings for the service name, port, and namespace which should be set
in the header file with //gsoap directives (Section 19.2).

7.2.11 How to Use Client Functionalities Within a Service

A gSOAP service implemented with CGI may make direct client calls to other services from within
its service operations, without setting up a new context. A stand-alone service application must
setup a new soap struct context, e.g. using soap copy and delete it after the call.

The server-side client call is best illustrated with an example. The following example is a more
sophisticated example that combines the functionality of two Web services into one new SOAP Web
service. The service provides a currency-converted stock quote. To serve a request, the service in
turn requests the stock quote and the currency-exchange rate from two XMethods services (these
services are no longer available by XMethods, but are used here as an example).

In addition to being a client of two XMethods services, this service application can also be used as a
client of itself to test the implementation. As a client invoked from the command-line, it will return
a currency-converted stock quote by connecting to a copy of itself installed as a CGI application
on the Web to retrieve the quote after which it will print the quote on the terminal.

The header file input to the gSOAP soapcpp2 compiler is given below. The example is for illustrative
purposes only (the XMethods services are not operational):

// Contents of file ”quotex.h”:
int ns1 getQuote(char *symbol, float &result); // XMethods delayed stock quote service service
operation
int ns2 getRate(char *country1, char *country2, float &result); // XMethods currency-exchange
service service operation
int ns3 getQuote(char *symbol, char *country, float &result); // the new currency-converted
stock quote service

The quotex.cpp client/service application source is:

// Contents of file ”quotex.cpp”:
#include ”soapH.h” // include generated proxy and SOAP support
int main(int argc, char **argv)
{

struct soap soap;
float q;
soap init(&soap);
if (argc <= 2)

soap serve(&soap);
else if (soap call ns3 getQuote(&soap, "http://www.cs.fsu.edu/\symbol{126}engelen/quotex.cgi",

"", argv[1], argv[2], q))
soap print fault(&soap, stderr);

else
printf("\nCompany %s: %f (%s)\n", argv[1], q, argv[2]);

return 0;
}

63

int ns3 getQuote(struct soap *soap, char *symbol, char *country, float &result)
{

float q, r;
int socket = soap->socket; // save socket (stand-alone service only, does not support keep-alive)
if (soap call ns1 getQuote(soap, "http://services.xmethods.net/soap", "", symbol, &q)

== 0 &&
soap call ns2 getRate(soap, "http://services.xmethods.net/soap", NULL, "us", coun-

try, &r) == 0)
{

result = q*r;
soap->socket = socket;
return SOAP OK;

}
soap->socket = socket;
return SOAP FAULT; // pass soap fault messages on to the client of this app
}
/* Since this app is a combined client-server, it is put together with
one header file that describes all service operations. However, as a consequence we
have to implement the methods that are not ours. Since these implementations are
never called (this code is client-side), we can make them dummies as below.
/
int ns1 getQuote(struct soap *soap, char *symbol, float &result)
{ return SOAP NO METHOD; } // dummy: will never be called
int ns2 getRate(struct soap *soap, char *country1, char *country2, float &result)
{ return SOAP NO METHOD; } // dummy: will never be called

struct Namespace namespaces[] =
{
{”SOAP-ENV”, ”http://schemas.xmlsoap.org/soap/envelope/”},
{”SOAP-ENC”, ”http://schemas.xmlsoap.org/soap/encoding/”},
{”xsi”, ”http://www.w3.org/2001/XMLSchema-instance”, ”http://www.w3.org/*/XMLSchema-

instance”},
{”xsd”, ”http://www.w3.org/2001/XMLSchema”, ”http://www.w3.org/*/XMLSchema”},
{”ns1”, ”urn:xmethods-delayed-quotes”},
{”ns2”, ”urn:xmethods-CurrencyExchange”},
{”ns3”, ”urn:quotex”},
{NULL, NULL}

};

To compile:

> soapcpp2 quotex.h
> c++ -o quotex.cgi quotex.cpp soapC.cpp soapClient.cpp soapServer.cpp stdsoap2.cpp -lsocket
-lxnet -lnsl

Note: under Linux and Mac OS X you can often omit the -l libraries.

The quotex.cgi executable is installed as a CGI application on the Web by copying it in the designated
directory specific to your Web server. After this, the executable can also serve to test the service.
For example

> quotex.cgi IBM uk

64

returns the quote of IBM in uk pounds by communicating the request and response quote from
the CGI application. See http://xmethods.com/detail.html?id=5 for details on the currency
abbreviations.

When combining clients and service functionalities, it is required to use one header file input to the
compiler. As a consequence, however, stubs and skeletons are available for all service operations,
while the client part will only use the stubs and the service part will use the skeletons. Thus,
dummy implementations of the unused service operations need to be given which are never called.

Three WSDL files are created by gSOAP: ns1.wsdl, ns2.wsdl, and ns3.wsdl. Only the ns3.wsdl file
is required to be published as it contains the description of the combined service, while the others
are generated as a side-effect (and in case you want to develop these separate services).

7.3 Asynchronous One-Way Message Passing

SOAP RPC client-server interaction is synchronous: the client blocks until the server responds to
the request. gSOAP also supports asynchronous one-way message passing and the interoperable
synchronous one-way message passing over HTTP. The two styles are similar, but only the latter is
interoperable and is compliant to Basic Profile 1.0. The interoperable synchronous one-way message
passing style over HTTP is discussed in Section 7.4 below.

SOAP messaging routines are declared as function prototypes, just like service operations for SOAP
RPC. However, the output parameter is a void type to indicate the absence of a return value.

For example, the following header file specifies an event message for SOAP messaging:

int ns event(int eventNo, void);

The gSOAP soapcpp2 tool generates the following functions in soapClient.cpp:

int soap send ns event(struct soap *soap, const char URL, const char action, int event);
int soap recv ns event(struct soap *soap, struct ns event *dummy);

The soap send ns event function transmits the message to the destination URL by opening a socket
and sending the SOAP encoded message. The socket will remain open after the send and has to
be closed with soap closesock(). The open socket connection can also be used to obtain a service
response, e.g. with a soap recv function call.

The soap recv ns event function waits for a SOAP message on the currently open socket (soap.socket)
and fills the struct ns event with the ns event parameters (e.g. int eventNo). The struct ns event is
automatically created by gSOAP and is a mirror image of the ns event parameters:

struct ns event
{ int eventNo;
}

The gSOAP generated soapServer.cpp code includes a skeleton routine to accept the message. (The
skeleton routine does not respond with a SOAP response message.)

65

int soap serve ns event(struct soap *soap);

The skeleton routine calls the user-implemented ns event(struct soap *soap, int eventNo) routine (note
the absence of the void parameter!).

As usual, the skeleton will be automatically called by the service operation request dispatcher that
handles both the service operation requests (RPCs) and messages:

int main()
{ soap serve(soap new());
}
int ns event(struct soap *soap, int eventNo)
{

... // handle event
return SOAP OK;
}

7.4 Implementing Synchronous One-Way Message Passing over HTTP

One-way SOAP message passing over HTTP as defined by the SOAP specification and Basic Profile
1.0 is synchrounous, meaning that the server must respond with an HTTP OK header (or HTTP
202 Accepted) and an empty body. To implement synchrounous one-way messaging, the same setup
for asynchrounous one-way messaing discussed in Section 7.3 is used, but with one simple addition
at the client and server side for HTTP transfer.

At the server side, we have to return an empty HTTP OK response. Normally with one-way
messaging the gSOAP engine closes the socket when the service operation is finished, which is not
desirable for synchronous one-way message exchanges over HTTP: an HTTP response should be
send. This is accomplished as follows. For each one-way operation implemented in C/C++, we
replace the return SOAP OK with:

int ns event(struct soap *soap, int eventNo)
{

... // handle event
return soap send empty response(soap, SOAP OK); // SOAP OK: return HTTP 202 ACCEPTED
}

At the client side, the empty response header must be parsed as follows:

if (soap send ns event(soap, eventNo) != SOAP OK
|| soap recv empty response(soap) != SOAP OK)
soap print fault(soap, stderr);

...

The synchronous (and asynchronous) one-way messaging supports HTTP keep-alive and chunking.

66

7.5 How to Use the SOAP Serializers and Deserializers to Save and Load Ap-
plication Data using XML Data Bindings

The gSOAP XML databindings for C and C++ allow a seamless integration of XML in C and
C++ applications. Data can be serialized in XML and vice versa. WSDL and XML schema files
can be converted to C or C++ definitions. C and C++ definitions can be translated to WSDL and
schemas to support legacy ANSI C applications for example.

7.5.1 Mapping XML Schema to C/C++ with wsdl2h

Command:

> wsdl2h [options] XSD and WSDL files ...

The WSDL 1.1 and 2.0 standards are supported. If you have trouble with WSDL 2.0 please
contact the author. The entire XML schema 1.1 standard is supported, except XPath expressions
and assertions. This covers all of the following schema components with their optional [attributes
] shown:

<xs:any [minOccurs, maxOccurs] >
<xs:anyAttribute>
<xs:all>
<xs:choice [minOccurs, maxOccurs] >
<xs:sequence [minOccurs, maxOccurs] >
<xs:group [name, ref] >
<xs:attributeGroup [name, ref] >
<xs:attribute [name, ref, type, use, default, fixed, form, wsdl:arrayType] >
<xs:element [name, ref, type, default, fixed, form, nillable, abstract,
substitutionGroup, minOccurs, maxOccurs] >
<xs:simpleType [name] >
<xs:complexType [name, abstract, mixed] >

The supported facets are:

<xs:enumeration>
<xs:simpleContent>
<xs:complexContent>
<xs:list>
<xs:extension>
<xs:restriction>
<xs:length>
<xs:minLength>
<xs:maxLength>
<xs:minInclusive>
<xs:maxInclusive>
<xs:minExclusive>
<xs:maxExclusive>
<xs:precision> maps to float/double, content not validated yet
<xs:scale> maps to float/double, content not validated yet

67

<xs:totalDigits> content not automatically validated yet
<xs:pattern> content not automatically validated yet
<xs:union> maps to string, content not validated yet

Other:

<xs:import>
<xs:include>
<xs:redefine>
<xs:annotation>

All primitive XSD types are supported (with the default mapping shown):

xsd:string maps to string (char*,wchar t*,std::string,std::wstring)
xsd:boolean maps to bool (C++) or enum xsd boolean (C)
xsd:float maps to float
xsd:double maps to double
xsd:decimal maps to string, or use ”#import ”custom/decimal.h”
xsd:precisionDecimal maps to string
xsd:duration maps to string, or use ”#import ”custom/duration.h”
xsd:dateTime maps to time t, or use ”#import ”custom/struct tm.h”
xsd:time maps to string
xsd:date maps to string
xsd:gYearMonth maps to string
xsd:gYear maps to string
xsd:gMonth maps to string
xsd:hexBinary maps to struct xsd hexBinary
xsd:base64Bianry maps to struct xsd base64Binary
xsd:anyURI maps to string
xsd:QName maps to QName (string normalization rules apply)
xsd:NOTATION maps to string

Note: string targets are defined in the typemap.dat file used by wsdl2h to map XSD types. This
allows the use of char*, wsha t*, std::string, and std::wstring string types for all XSD types mapped
to strings.

All non-primitive XSD types are supported (with the default mapping shown):

xsd:normalizedString maps to string
xsd:token maps to string
xsd:language maps to string
xsd:IDREFS maps to string
xsd:ENTITIES maps to string
xsd:NMTOKEN maps to string
xsd:NMTOKENS maps to string
xsd:Name maps to string
xsd:NCName maps to string
xsd:ID maps to string
xsd:IDREF maps to string
xsd:ENTITY maps to string
xsd:integer maps to string

68

xsd:nonPositiveInteger maps to string
xsd:negativeInteger maps to string
xsd:long maps to LONG64
xsd:int maps to int
xsd:short maps to short
xsd:byte maps to byte
xsd:nonNegativeInteger maps to string
xsd:unsignedLong maps to ULONG64
xsd:unsignedInt maps to unsigned int
xsd:unsignedShort maps to unsigned short
xsd:unsignedByte maps to unsigned byte
xsd:positiveInteger maps to string
xsd:yearMonthDuration maps to string
xsd:dayTimeDuration maps to string
xsd:dateTimeStamp maps to string

There are several initialization flags to control XML serialization at runtime:

• XML content validation is enforced with SOAP XML STRICT.

• XML namespaces are supported, unless disabled with SOAP XML IGNORENS.

• XML exclusive canonicalization is enabled with SOAP XML CANONICAL.

• XML default xmlns=”...” namespace bindings are used with SOAP XML DEFAULTNS.

• XML is indented for enhanced readability with SOAP XML INDENT.

• XML xsi:nil for NULL elements is serialized with SOAP XML NIL.

To obtain C and/or C++ type definitions for XML schema components, run wsdl2h on the schemas
to generate a header file. This header file defines the C/C++ type representations of the XML
schema components. The header file is then processed by the soapcpp2 tool to generate the serializers
for these types. See Section 1.4 for an overview to use wsdl2h and soapcpp2 to map schemas to C/C++
types to obtain XML data bindings.

7.5.2 Mapping C/C++ to XML Schema with soapcpp2

To generate serialization code, execute:

> soapcpp2 [options] header file.h

The following C/C++ types are supported in the header file:

bool
enum, enum* (’enum*’ indicates serialized as a bitmask)
(unsigned) char, short, int, long, long long (also LONG64), size t
float, double, longdouble(#import ”custom/long double.h”)
std::string, std::wstring, char[], char*, wchar t*
XML (a char* type to hold literal XML string content)

69

QName (a char* type with normalized QName content of the form prefix:name)
struct, class (with single inheritance)
std::vector, std::list, std::deque, std::set (#import ”import/stl.h”)
union (requires preceding discriminant member field)
typedef
time t
template<> class(requires begin(), end(), size(), and insert() methods)
void* (requires a preceding type field to indicate the object pointed to)
struct xsd hexBinary (special pre-defined type to hold binary content)
struct xsd base64Binary (special pre-defined type to hold binary content)
struct tm (#import ”custom/struct tm.h”)
struct timeval (#import ”custom/struct timeval.h”)
pointers to any of the above (any pointer-linked structures are serializable, including cyclic graphs)
fixed-size arrays of all of the above

Additional features and potential limitations:

• A header file should not include any code statements, only data type declarations.

• Nested classes and nested types are unnested.

• Use #import ”file.h” instead of #include to import other header files. The #include and #define

directives are accepted, but deferred to the generated code.

• C++ namespaces are supported (must cover entire header file content)

• Optional DOM support can be used to store mixed content or literal XML content. Otherwise,
mixed content may be lost. Use soapcpp2 option -d for DOM support.

• Types are denoted transient using the ’extern’ qualifier, which prevents serialization as de-
sired:

extern class name; // class ’name’ is not serialized
struct name { extern char *name; int num; }; // ’name’ is not serialized

• Only public members of a class can be serialized:

class name { private: char *secret; }; // ’secret’ is not serialized

• Types are denoted ”volatile”, which means that they are declared elsewhere in the source
code and should not be redeclared in the generated code nor augmented by the soapcpp2 tool:

volatile class name { ... }; // defined here just to generate the serializers

• struct/class members are serialized as attributes when qualified with ’@’:

struct record { @char *name; int num; }; // attribute name, element num

• Strings with 8-bit content can hold ASCII (default) or UTF8. The latter is possible by
enabling the SOAP C UTFSTRING flag. When enabled, all std::string and char* strings MUST
contain UTF8.

70

The soapcpp2 tool generates serializers and deserializers for all wsdl2h-generated or user-defined
data structures that are specified in the header file input to the compiler. The serializers and
deserializers can be found in the generated soapC.cpp file. These serializers and deserializers can
be used separately by an application without the need to build a full client or service application.
This is useful for applications that need to save or export their data in XML or need to import or
load data stored in XML format.

7.5.3 Serializing C/C++ Data to XML

We assume that the wsdl2h tool was used to map XML schema types to C/C++ data types. The
soapcpp2 tool then generates the (de)serializers for the C/C++ types. You can also use soapcpp2

directly on a header file that declares annotated C/C++ data types to serialize.

The following attributes can be set to control the destination and source for serialization and
deserialization:

Variable Description
int soap.socket socket file descriptor for input and output (or set to SOAP INVALID SOCKET)
ostream *soap.os (C++ only) output stream used for send operations
istream *soap.is (C++ only) input stream used for receive operations
int soap.sendfd when soap.socket=SOAP INVALID SOCKET, this fd is used for send operations
int soap.recvfd when soap.socket=SOAP INVALID SOCKET, this fd is used for receive operations

The following initializing and finalizing functions can be used:

Function Description
void soap begin send(struct soap*) start a send/write phase
int soap end send(struct soap*) flush the buffer
int soap begin recv(struct soap*) start a rec/read phase (if an HTTP header is present, parse it first)
int soap end recv(struct soap*) perform a id/href consistency check on deserialized data

These operations do not open or close the connections. The application should open and close
connections or files and set the soap.socket, soap.os or soap.sendfd, soap.is or soap.recvfd streams or
descriptors. When soap.socket<0 and none of the streams and descriptors are set, then the standard
input and output will be used.

The following options are available to control serialization:

soap-¿encodingStyle = NULL; // to remove SOAP 1.1/1.2 encodingStyle
soap mode(soap, SOAP XML TREE); // XML without id-ref (no cycles!)
soap mode(soap, SOAP XML GRAPH); // XML with id-ref (including cycles)
soap set namespaces(soap, struct Namespace *nsmap); //to set xmlns bindings

See also Section 9.12 to control the I/O buffering and content encoding such as compression and
DIME encoding.

We assume that the wsdl2h tool was used to map XML schema types to C/C++ data types. The
soapcpp2 tool then generates the (de)serializers for the C/C++ types.

To serialize data to an XML stream, two functions should be called to prepare for serialization of
the data and to send the data, respectively. The first function, soap serialize, analyzes pointers and

71

determines if multi-references are required to encode the data and if cycles are present the object
graph. The second function, soap put, produces the XML output on a stream.

The soap serialize and soap put (and both combined by soap write) functions are statically generated
specific to a data type. For example, soap serialize float(&soap, &d) is called to serialize an float

value and soap put float(&soap, &d, ”number”, NULL) is called to output the floating point value in
SOAP tagged with the name <number>. The soap write float(&soap, &d) conveniently combines the
initialization of output, writing the data, and finalizing the output.

To initialize data, the soap default function of a data type can be used. For example, soap default float(&soap,

&d) initializes the float to 0.0. The soap default functions are useful to initialize complex data types
such as arrays, structs, and class instances. Note that the soap default functions do not need the
gSOAP runtime context as a first parameter.

The following table lists the type naming conventions used by gSOAP:

Type Type Name
char* string
wchar t* wstring
char byte
bool bool
double double
int int
float float
long long
LONG64 LONG64 (Win32)
long long LONG64 (Unix/Linux)
short short
time t time
unsigned char unsignedByte
unsigned int unsignedInt
unsigned long unsignedLong
ULONG64 unsignedLONG64 (Win32)
unsigned long long unsignedLONG64 (Unix/Linux)
unsigned short unsignedShort
T[N] ArrayNOfType where Type is the type name of T
T* PointerToType where Type is the type name of T
struct Name Name
class Name Name
enum Name Name

Consider for example the following C code with a declaration of p as a pointer to a struct ns Person:

struct ns Person { char *name; } *p;

To serialize p, its address is passed to the function soap serialize PointerTons Person generated for this
type by the gSOAP soapcpp2 compiler:

soap serialize PointerTons Person(&soap, &p);

The address of p is passed, so the serializer can determine whether p was already serialized and
to discover co-referenced objects and cycles in graph data structures that require SOAP encod-

72

ing with id-ref serialization. To generate the output, the address of p is passed to the function
soap put PointerTons Person together with the name of an XML element and an optional type string
(to omit a type, use NULL):

soap begin send(&soap);
soap put PointerTons Person(&soap, &p, ”ns:element-name”, ”ns:type-name”);
soap end send(&soap);

or the shorthand for the above (without the xsi type):

soap write PointerTons Person(&soap, &p);

This produces:

<ns:element-name xmlns:SOAP-ENV="..." xmlns:SOAP-ENC="..." xmlns:ns="..."
... xsi:type="ns:type-name">

<name xsi:type="xsd:string">...</name>
</ns:element-name>

The serializer is initialized with the soap begin send(soap) function and closed with soap end send(soap).
All temporary data structures and data structures deserialized on the heap are destroyed with the
soap destroy and soap end functions (in this order).

The soap done function should be used to reset the context, i.e. the last use of the context. To
detach and deallocate the context, use soap free.

To remove the temporary data only and keep the deserialized data on the heap, use soap free temp.
Temporary data structures are only created if the encoded data uses pointers. Each pointer in
the encoded data has an internal hash table entry to determine all multi-reference parts and cyclic
parts of the complete data structure.

You can assign an output stream to soap.os or a file descriptor to soap.sendfd. For example

soap.sendfd = open(file, O RDWR|O CREAT, S IWUSR|S IRUSR);
soap serialize PointerTons Person(&soap, &p);
soap begin send(&soap);
soap put PointerTons Person(&soap, &p, ”ns:element-name”, ”ns:type-name”);
soap end send(&soap);

The above can be abbreviated to

soap.sendfd = open(file, O RDWR|O CREAT, S IWUSR|S IRUSR);
soap write PointerTons Person(&soap, &p);

The soap serialize function is optional. It MUST be used when the object graph contains cycles. It
MUST be called to preserve the logical coherence of pointer-based data structures, where pointers
may refer to co-referenced objects. By calling soap serialize, data structures shared through pointers
are serialized only once and referenced in XML using id-refs attributes. The actual id-refs used
depend on the SOAP encoding. To turn off SOAP encoding, remove or avoid using the SOAP-ENV
and SOAP-ENC namespace bindings in the namespace table. In addition, the SOAP XML TREE and

73

SOAP XML GRAPH flags can be used to control the output by restricting serialization to XML trees
or by enabling multi-ref graph serialization with id-ref attribuation.

To save the data as an XML tree (with one root) without any id-ref attributes, use the SOAP XML TREE

flag. The data structure MUST NOT contain pointer-based cycles.

To preserve the exact structure of the data object graph and create XML with one root, use the
SOAP XML GRAPH output-mode flag (see Section 9.12). Use this flag and the soap serialize function
to prepare the serialization of data with in-line id-ref attributes. Using the SOAP XML GRAPH flag
assures the preservation of the logical structure of the data

For example, to encode the contents of two variables var1 and var2 that may share data through
pointer structures, the serializers are called before the output routines:

T1 var1;
T2 var2;
struct soap soap;
...
soap init(&soap); // initialize
[soap omode(&soap, flags);] // set output-mode flags (e.g. SOAP ENC XML|SOAP ENC ZLIB)
soap begin(&soap); // start new (de)serialization phase
soap set omode(&soap, SOAP XML GRAPH);
soap serialize Type1(&soap, &var1);
soap serialize Type2(&soap, &var2);
...
[soap.socket = a socket file descriptor;] // when using sockets
[soap.os = an output stream;] // C++
[soap.sendfd = an output file descriptor;] // C
soap begin send(&soap);
soap put Type1(&soap, &var1, ”[namespace-prefix:]element-name1”, ”[namespace-prefix:]type-name1”);

soap put Type2(&soap, &var2, ”[namespace-prefix:]element-name2”, ”[namespace-prefix:]type-name2”);
...
soap end send(&soap); // flush
soap destroy(&soap); // remove deserialized C++ objects
soap end(&soap); // remove deserialized data structures
soap done(&soap); // finalize last use of this context
...

where Type1 is the type name of T1 and Type2 is the type name of T2 (see table above). The
strings [namespace-prefix:]type-name1 and [namespace-prefix:]type-name2 describe the schema types of the
elements. Use NULL to omit this type information.

For serializing class instances, method invocations MUST be used instead of function calls, for
example obj.soap serialize(&soap) and obj.soap put(&soap, ”elt”, ”type”). This ensures that the proper
serializers are used for serializing instances of derived classes.

You can serialize a class instance to a stream as follows:

struct soap soap;
myClass obj;
soap init(&soap); // initialize
soap begin(&soap); // start new (de)serialization phase

74

soap set omode(&soap, SOAP XML GRAPH);
obj.serialize(&soap);
soap.os = &cout; // send to cout
soap begin send(&soap);
obj.put(&soap, ”[namespace-prefix:]element-name1”, ”[namespace-prefix:]type-name1”);
soap end send(&soap); // flush
...
soap destroy(&soap); // remove deserialized C++ objects
soap end(&soap); // remove deserialized data
soap done(&soap); // finalize last use of this context

When you declare a soap struct pointer as a data member in a class, you can overload the <<
operator to serialize the class to streams:

ostream &operator<<(ostream &o, const myClass &e)
{

if (!e.soap)
... error: need a soap struct to serialize (could use global struct) ...
else
{

ostream *os = e.soap->os;
e.soap->os = &o;
soap set omode(e.soap, SOAP XML GRAPH); e.serialize(e.soap);
soap begin send(e.soap);
e.put(e.soap, ”myClass”, NULL);
soap end send(e.soap);
e.soap->os = os;
soap clr omode(e.soap, SOAP XML GRAPH);

}
return o;
}

Of course, when you construct an instance you must set its soap struct to a valid context. Deserial-
ized class instances with a soap struct data member will have their soap structs set automatically,
see Section 9.13.2.

In principle, XML output for a data structure can be produced with soap put without calling the
soap serialize function first. In this case, the result is similar to SOAP XML TREE which means that
no id-refs are output. Cycles in the data structure will crash the serialization algorithm, even when
the SOAP XML GRAPH is set.

Consider the following struct:

// Contents of file ”tricky.h”:
struct Tricky
{

int *p;
int n;
int *q;
};

The following fragment initializes the pointer fields p and q to the value of field n:

75

struct soap soap;
struct Tricky X;
X.n = 1;
X.p = &X.n;
X.q = &X.n;
soap init(&soap);
soap begin(&soap);
soap serialize Tricky(&soap, &X);
soap put Tricky(&soap, &X, "Tricky", NULL);
soap end(&soap); // Clean up temporary data used by the serializer

What is special about this data structure is that n is ’fixed’ in the Tricky structure, and p and q

both point to n. The gSOAP serializers strategically place the id-ref attributes such that n will be
identified as the primary data source, while p and q are serialized with ref/href attributes.

The resulting output is:

<Tricky xsi:type="Tricky">
<p href="#2"/> <n xsi:type="int">1</n> <q href="#2"/> <r xsi:type="int">2</r> </Tricky>
<id id="2" xsi:type="int">1</id>

which uses an independent element at the end to represent the multi-referenced integer, assuming
the SOAP-ENV and SOAP-ENC namespaces indicate SOAP 1.1 encoding.

With the SOAP XML GRAPH flag the output is:

<Tricky xsi:type="Tricky">
<p href="#2"/> <n id="2" xsi:type="int">1</n> <q href="#2"/> </Tricky>

In this case, the XML is self-contained and multi-referenced data is accurately serialized. The
gSOAP generated deserializer for this data type will be able to accurately reconstruct the data
from the XML (on the heap).

7.5.4 Deserializing C/C++ Data from XML

We assume that the wsdl2h tool was used to map XML schema types to C/C++ data types. The
soapcpp2 tool then generates the (de)serializers for the C/C++ types. You can also use soapcpp2

directly on a header file that declares annotated C/C++ data types to serialize.

To deserialize a data type from XML, the soap get (or the simpler soap read) function for the data
type to be deserialized is used. The outline of a program that deserializes two variables var1 and
var2 is for example:

T1 var1;
T2 var2;
struct soap soap;
...
soap init(&soap); // initialize at least once
[soap imode(&soap, flags);] // set input-mode flags
soap begin(&soap); // begin new decoding phase

76

[soap.is = an input stream;] // C++
[soap.recvfd = an input file desriptpr;] // C
soap begin recv(&soap); // if HTTP/MIME/DIME/GZIP headers are present, parse them
if (!soap get Type1(&soap, &var1, ”[namespace-prefix:]element-name1”, ”[namespace-prefix:]type-
name1”))

... error ...
if (!soap get Type2(&soap, &var2, ”[namespace-prefix:]element-name2”, ”[namespace-prefix:]type-
name1”))

... error ...
...
soap end recv(&soap); // check consistency of id/hrefs
soap destroy(&soap); // remove deserialized C++ objects
soap end(&soap); // remove deserialized data
soap done(&soap); // finalize last use of the context

The strings [namespace-prefix:]type-name1 and [namespace-prefix:]type-name2 are the schema types of the
elements and should match the xsi:type attribute of the receiving message. To omit the match,
use NULL as the type. For class instances, method invocation can be used instead of a function call
if the object is already instantiated, i.e. obj.soap get(&soap, ”...”, ”...”).

The soap begin call resets the deserializers. The soap destroy and soap end calls remove the temporary
data structures and the decoded data that was placed on the heap.

To remove temporary data while retaining the deserialized data on the heap, the function soap free temp

should be called instead of soap destroy and soap end.

One call to the soap get Type function of a type Type scans the entire input to process its XML
content and to capture SOAP 1.1 independent elements (which contain multi-referenced objects).
As a result, soap.error will set to SOAP EOF. Also storing multiple objects into one file will fail to
decode them properly with multiple soap get calls. A well-formed XML document should only have
one root anyway, so don’t save multiple objects into one file. If you must save multiple objects,
create a linked list or an array of objects and save the linked list or array. You could use the
soap in Type function instead of the soap get Type function. The soap in Type function parses one
XML element at a time.

You can deserialize class instances from a stream as follows:

myClass obj;
struct soap soap;
soap init(&soap); // initialize
soap.is = &cin; // read from cin
soap begin recv(&soap); // if HTTP header is present, parse it
if (soap get myClass(&soap, &obj, ”myClass”, NULL) == NULL)

... error ...
soap end recv(&soap); // check consistency of id/hrefs
...
soap destroy(&soap); // remove deserialized C++ objects
soap end(&soap); // remove deserialized data
soap done(&soap); // finalize last use of the context

This can be abbreviated to:

77

myClass obj;
struct soap soap;
soap init(&soap); // initialize
soap.is = &cin; // read from cin
if (soap read myClass(&soap, &obj, NULL) != SOAP OK)

... error ...
...
soap destroy(&soap); // remove deserialized C++ objects
soap end(&soap); // remove deserialized data
soap done(&soap); // finalize last use of the context

When declaring a soap struct pointer as a data member in a class, you can overload the >> operator
to parse and deserialize a class instance from a stream:

istream &operator>>(istream &i, myClass &e)
{

if (!e.soap)
... error: need soap struct to deserialize (could use global struct)...
istream *is = e.soap->is;
e.soap->is = &i;
if (soap read myClass(e.soap, &e) != SOAP OK)

... error ...
e.soap->is = is;
return i;
}

7.5.5 Example

As an example, consider the following data type declarations:

// Contents of file ”person.h”:
typedef char *xsd string;
typedef char *xsd Name;
typedef unsigned int xsd unsignedInt;
enum ns Gender {male, female};
class ns Address
{

public:
xsd string street;
xsd unsignedInt number;
xsd string city;
};
class ns Person
{

public:
xsd Name name;
enum ns Gender gender;
ns Address address;
ns Person *mother;
ns Person *father;
};

78

The following program uses these data types to write to standard output a data structure that
contains the data of a person named ”John” living at Downing st. 10 in Londen. He has a mother
”Mary” and a father ”Stuart”. After initialization, the class instance for ”John” is serialized and
encoded in XML to the standard output stream using gzip compression (requires the Zlib library,
compile sources with -DWITH GZIP):

// Contents of file ”person.cpp”:
#include ”soapH.h”
int main()
{

struct soap soap;
ns Person mother, father, john;
mother.name = "Mary";
mother.gender = female;
mother.address.street = "Downing st.";
mother.address.number = 10;
mother.address.city = "London";
mother.mother = NULL;
mother.father = NULL;
father.name = "Stuart";
father.gender = male;
father.address.street = "Main st.";
father.address.number = 5;
father.address.city = "London";
father.mother = NULL;
father.father = NULL;
john.name = "John";
john.gender = male;
john.address = mother.address;
john.mother = &mother;
john.father = &father;
soap init(&soap);
soap omode(&soap, SOAP ENC ZLIB|SOAP XML GRAPH); // see 9.12
soap begin(&soap);
soap begin send(&soap);
john.soap serialize(&soap);
john.soap put(&soap, "johnnie", NULL);
soap end send(&soap);
soap destroy(&soap);
soap end(&soap);
soap done(&soap);
}
struct Namespace namespaces[] =
{
{”SOAP-ENV”, ”http://schemas.xmlsoap.org/soap/envelope/”},
{”SOAP-ENC”,”http://schemas.xmlsoap.org/soap/encoding/”},
{”xsi”, ”http://www.w3.org/2001/XMLSchema-instance”},
{”xsd”, ”http://www.w3.org/2001/XMLSchema”},
{”ns”, ”urn:person”}, // Namespace URI of the “Person” data type
{NULL, NULL}
};

79

The header file is processed and the application compiled on Linux/Unix with:

> soapcpp2 person.h
> c++ -DWITH GZIP -o person person.cpp soapC.cpp stdsoap2.cpp -lsocket -lxnet -lnsl -lz

(Depending on your system configuration, the libraries libsocket.a, libxnet.a, libnsl.a are required.
Compiling on Linux typically does not require the inclusion of those libraries.) See 19.27 for details
on compression with gSOAP.

Running the person application results in the compressed XML output:

<johnnie xsi:type="ns:Person" xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ns="urn:person"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<name xsi:type="xsd:Name">John</name>
<gender xsi:type="ns:Gender">male</gender>
<address xsi:type="ns:Address">
<street id="3" xsi:type="xsd:string">Dowling st.</street>
<number xsi:type="unsignedInt">10</number>
<city id="4" xsi:type="xsd:string">London</city>
</address>
<mother xsi:type="ns:Person">
<name xsi:type="xsd:Name">Mary</name>
<gender xsi:type="ns:Gender">female</gender>
<address xsi:type="ns:Address">
<street href="#3"/>
<number xsi:type="unsignedInt">5</number>
<city href="#4"/>
</address>
</mother>
<father xsi:type="ns:Person">
<name xsi:type="xsd:Name">Stuart</name>
<gender xsi:type="ns:Gender">male</gender>
<address xsi:type="ns:Address">
<street xsi:type="xsd:string">Main st.</street>
<number xsi:type="unsignedInt">13</number>
<city href="#4"/>
</address>
</father>
</johnnie>

The following program fragment decodes this content from standard input and reconstructs the
original data structure on the heap:

#include ”soapH.h”
int main()
{

struct soap soap;

80

ns Person *mother, *father, *john = NULL;
soap init(&soap);
soap imode(&soap, SOAP ENC ZLIB); // optional: gzip is detected automatically
soap begin(&soap);
if ((john = soap get ns Person(&soap, NULL, NULL, NULL)) == NULL)

... error ...
mother = john->mother;
father = john->father;
...
soap end recv(&soap);
soap free temp(&soap); // Clean up temporary data but keep deserialized data
}
struct Namespace namespaces[] =
{
{”SOAP-ENV”, ”http://schemas.xmlsoap.org/soap/envelope/”},
{”SOAP-ENC”,”http://schemas.xmlsoap.org/soap/encoding/”},
{”xsi”, ”http://www.w3.org/2001/XMLSchema-instance”},
{”xsd”, ”http://www.w3.org/2001/XMLSchema”},
{”ns”, ”urn:person”}, // Namespace URI of the “Person” data type
{NULL, NULL}
};

It is REQUIRED to either pass NULL to the soap get routine, or a valid pointer to a data structure
that can hold the decoded content. If the data john was already allocated then it does not need
to be allocated again as the following demonstrates. The following program fragment decodes the
SOAP content in a struct ns Person allocated on the stack:

#include ”soapH.h”
int main()
{

struct soap soap;
ns Person *mother, *father, john;
soap init(&soap);
soap default ns Person(&soap, &john);
soap imode(&soap, SOAP ENC ZLIB); // optional
soap begin(&soap);
soap begin recv(&soap);
if (soap get ns Person(&soap, &john, ”johnnie”, NULL) == NULL)

... error ...
...
}
struct Namespace namespaces[] =

...

Note the use of soap default ns Person. This routine is generated by the gSOAP soapcpp2 tool and
assigns default values to the fields of john.

81

7.5.6 Serializing and Deserializing Class Instances to Streams

C++ applications can define appropriate stream operations on objects for (de)serialization of ob-
jects on streams. This is best illustrated with an example. Section 7.5.3 gives details on serializing
types in general. Consider the class

class ns person
{ public:

char *name;
struct soap *soap; // we need this, see below
ns person();
˜ns person();
};

The struct soap member is used to bind the instances to a gSOAP context for (de)serialization. We
use the gSOAP soapcpp2 compiler from the command prompt to generate the class (de)serializers
(assuming that person.h contains the class declaration):

> soapcpp2 person.h

gSOAP generates the (de)serializers and an instantiation function for the class soap new ns person(struct

soap *soap, int num) to instantiate one or more objects and associate them with a gSOAP context
for deallocation with soap destroy(soap). To instantiate a single object, omit the num parameter or
set to -1. To instantiate an array of objects, set num≥ 0.

#include ”soapH.h”
#include ”ns.nsmap”
...
struct soap *soap = soap new();
ns person *p = soap new ns person(soap);
...
cout << p; // serialize p in XML
...
in >> p; // parse XML and deserialize p
...
soap destroy(soap); // deletes p too
soap end(soap);
soap done(soap);

The stream operations are implemented as follows

ostream &operator<<(ostream &o, const ns person &p)
{

if (!p.soap)
return o; // need a gSOAP context to serialize

p.soap->os = &o;
soap omode(p.soap, SOAP XML TREE); // XML tree or graph
p.soap serialize(p.soap);
soap begin send(p.soap);
if (p.soap put(p.soap, ”person”, NULL)

82

|| soap end send(p.soap))
; // handle I/O error

return o;
}
istream &operator>>(istream &i, ns person &p)
{

if (!p.soap)
return o; // need a gSOAP context to parse XML and deserialize

p.soap->is = &i;
if (soap begin recv(p.soap)
|| p.soap in(p.soap, NULL, NULL)
|| soap end recv(p.soap))
; // handle I/O error

return i;
}

7.5.7 How to Specify Default Values for Omitted Data

The gSOAP soapcpp2 compiler generates soap default functions for all data types. The default values
of the primitive types can be easily changed by defining any of the following macros in the stdsoap2.h

file:

#define SOAP DEFAULT bool
#define SOAP DEFAULT byte
#define SOAP DEFAULT double
#define SOAP DEFAULT float
#define SOAP DEFAULT int
#define SOAP DEFAULT long
#define SOAP DEFAULT LONG64
#define SOAP DEFAULT short
#define SOAP DEFAULT string
#define SOAP DEFAULT time
#define SOAP DEFAULT unsignedByte
#define SOAP DEFAULT unsignedInt
#define SOAP DEFAULT unsignedLong
#define SOAP DEFAULT unsignedLONG64
#define SOAP DEFAULT unsignedShort
#define SOAP DEFAULT wstring

Instead of adding these to stdsoap2.h, you can also compile with option -DWITH SOAPDEFS H and
include your definitions in file userdefs.h. The absence of a data value in a receiving SOAP message
will result in the assignment of a default value to a primitive type upon deserialization.

Default values can also be assigned to individual struct and class fields of primitive type. For
example,

struct MyRecord
{

char *name = ”Unknown”;
int value = 9999;

83

enum Status { active, passive } status = passive;
}

Default values are assigned to the fields on receiving a SOAP/XML message in which the data
values are absent.

Because method requests and responses are essentially structs, default values can also be assigned to
method parameters. The default parameter values do not control the parameterization of C/C++
function calls, i.e. all actual parameters must be present when calling a function. The default
parameter values are used in case an inbound request or response message lacks the XML ele-
ments with parameter values. For example, a Web service can use default values to fill-in absent
parameters in a SOAP/XML request:

int ns login(char *uid = ”anonymous”, char *pwd = ”guest”, bool granted);

When the request message lacks uid and pwd parameters, e.g.:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ns="http://tempuri.org">
<SOAP-ENV:Body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<ns:login>
</ns:login>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

then the service uses the default values. In addition, the default values will show up in the
SOAP/XML request and response message examples generated by the gSOAP compiler.

8 The wsdl2h WSDL and Schema Importer

The wsdl2h tool is an advanced application that converts one or more WSDLs to C/C++. It can
also be used without WSDLs to convert XML schemas (XSD files) to C/C++ to implement XML
data bindings in C and C++.

The creation of C and C++ applications from one of more WSDL service descriptions is a two-step
process.

To convert a WSDL to C++, use:

> wsdl2h file.wsdl

to generate a C++ header file file.h. This generated header file is a Web service specification
that contains the parameter types and service function definitions in an understandable format in
C++ (or ANSI C as shown below). Web service operations are represented as function prototypes.

84

Schema types are represented by semantically equivalent C/C++ types that are convenient and
natural to use in a C/C++ application. The generated header file also contains various annotations
related to the Web service properties defined in the WSDL.

To generate ANSI C, use option -c:

> wsdl2h -c file.wsdl

Multiple WSDL specifications can be processed at once and saved to one file with the -o option:

> wsdl2h -o file.h file1.wsdl file2.wsdl file3.wsdl

You can retrieve WSDLs from one of more URLs:

> wsdl2h -o file.h http://www.example.com/example.wsdl

To convert XML schemas to C or C++ XML data binding code, use:

> wsdl2h -o file.h file1.xsd file2.xsd file3.xsd

The wsdl2h-generated header file file.h is processed by the soapcpp2 tool to auto-generate the ad-
vanced data binding logic to convert the C/C++ data to XML and vice versa at runtime for your
SOAP/XML application.

To process a gSOAP header file file.h (generated by wsdl2h) to generate advanced XML data bindings
for C++, use:

> soapcpp2 -i -Iimport file.h

When the header file file.h was generated for C++, then this command generates a couple of
C++ source files (more details will follow in Section 9) that implement XML encoders for the
data binding. Option -i generates a client proxy objects and service objects to invoke and serve
SOAP/XML operations, respectively. Option -Iimport sets the import directory for imported files
from the package’s import, such as stlvector.h for STL vector serialization support.

When the header file file.h was generated for ANSI C, then the above command generates a couple
of C files that implement XML encoders, client stubs for remote invocation, and service skeletons
for service operations.

Consider for example the following commands to implement a c++ client of a service:

> wsdl2h -o calc.h http://www.genivia.com/calc.wsdl
...
> soapcpp2 -i -Iimport calc.h

The first command generates calc.h from the WSDL at the specified URL. The header file is then
processed by the soapcpp2 tool to generate the proxies (and service objects that we will not use) for
the client application.

The C++ client application uses the auto-generated soapcalcProxy.h class and calc.nsmap XML names-
pace table to access the Web service. Both need to be #include-d in your source. Then compile and
link the soapcalcProxy.cpp, soapC.cpp and stdsoap2.cpp sources to complete the build.

85

8.1 wsdl2h Options

The wsdl2h tool is an advanced XML data binding tool for converting WSDLs and XML schemas
(XSD files) to C or C++. The tool takes WSDL and/or XSD files or URLs and converts these to a
C or C++ specification in one easy-to-read C/C++ header file. The header file is not intended
to be included in your code directly!. It should be converted by soapcpp2 to generate the logic
for the data bindings. It can however be safely converted by a documentation tool such as Doxygen
to analyze and represent the service operations and data in a convenient layout. To this end, the
header file is self-explanatory.

The wsdl2h tool generates only one file, the header file that includes all of the information obtained
from all WSDL and schema files provided to the tool at the command-line prompt. The default
output file name of wsdl2h is the first WSDL/schema input file name but with extension .h instead
of .wsdl (or .xsd). When an input file is absent or a WSDL file from a Web location is accessed,
the header output will be produced on the standard output unless option -o is used to direct the
output to a file.

The wsdl2h command-line options are:

86

Option Description
-a generate indexed struct names for local elements with anonymous types
-b bi-directional operations to serve one-way response messages (duplex)
-c generate C source code
-d use DOM to populate xs:any and xsd:anyType elements
-e don’t qualify enum names

This option is for backward compatibility with gSOAP 2.4.1 and earlier.
The option does not produce code that conforms to WS-I Basic Profile 1.0a.

-f generate flat C++ class hierarchy for schema extensions
-g generate global top-level element declarations
-h print help information
-I path use path to locate source files for #import
-i don’t import (advanced option)
-j don’t generate SOAP ENV Header and SOAP ENV Detail definitions
-k don’t generate SOAP ENV Header mustUnderstand qualifiers
-l include license information in output
-m use xsd.h module to import primitive types
-N name use name for service prefixes to produce a service for each binding
-n name use name as the base namespace prefix name instead of ns
-o file output to file
-P don’t create polymorphic types inherited from xsd anyType
-p create polymorphic types inherited from base xsd anyType

This is automatically performed when WSDL contains polymorphic definitions
-q name use name for the C++ namespace of all declarations
-r host[:port[:uid:pwd]] connect via proxy host, port, and proxy credentials
-R generate REST operations for REST bindings in the WSDL
-s don’t generate STL code (no std::string and no std::vector)
-t file use type map file instead of the default file typemap.dat
-u don’t generate unions
-v verbose output
-W suppress warnings
-w always wrap response parameters in a response struct
-x don’t generate XML any/anyAttribute extensibility elements
-y generate typedef synonyms for structs and enums
-z1 compatibility with 2.7.6e: generate pointer-based arrays
-z2 compatibility with 2.7.15: qualify element/attribute referenced members
-z3 compatibility with 2.7.16 to 2.8.7: qualify element/attribute references
-z4 compatibility up to 2.8.11: don’t generate union structs in std::vector
- don’t generate USCORE (replace with UNICODE x005f)

Note: see README.txt in the wsdl directory for the latest information on installation and options to
of the wsdl2h WSDL/schema importer.

8.2 Customizing Data Bindings With The typemap.dat File

The typemap.dat file for the wsdl2h tool is intended to customize or optimize the type bindings by
mapping schema types to C/C++ types. It contains custom XML Schema to C/C++ type bindings
and a few bindings are defined for convenience.

Here is an example typemap file’s content:

87

This file contains custom definitions of the XML Schema types and
C/C++ types for your project, and XML namespace prefix definitions.
The wsdl2h WSDL importer consults this file to determine bindings.

[
// This comment will be included in the generated .h file
// You can include any additional declarations, includes, imports, etc.
// within [] sections. The brackets MUST appear at the start of a line
]
XML namespace prefix definitions can be provided to override the
default choice of ns1, ns2, ... prefixes. For example:

i = "http://www.soapinterop.org/"
s = "http://www.soapinterop.org/xsd"

Type bindings can be provided to bind XML schema types to C/C++ types for your project. Type
bindings have four parts:

prefix type = declaration | use | ptr-use

where ’prefix type’ is the C/C++-translation of the schema type, ’declaration’ introduces the
C/C++ type in the header file, the optional ’use’ specifies how the type is used directly, and the
optional ’ptr-use’ specifies how the type is used as a pointer type.

Example XML Schema and C/C++ type bindings:

xsd int = | int
xsd string = | char* | char*
xsd boolean = enum xsd boolean false , true ; | enum xsd boolean
xsd base64Binary = class xsd base64Binary unsigned char * ptr; int size; ; |
xsd base64Binary | xsd base64Binary
You can extend structs and classes with member data and functions.
For example, adding a constructor to ns myClass: ns myClass = $ ns myClass();
The general form is # class name = $ member;

The i and s prefixes are declared such that the header file output by the WSDL parser will use
these to produce C/C++ code. XML Schema types are associated with an optional C/C++ type
declaration, a use reference, and a pointer-use reference. The pointer-use reference of the xsd byte

type for example, is int* because char* is reserved for strings.

When a type binding requires only the usage to be changed, the declaration part can be given by
an elipsis ..., as in:

prefix type = ... | use | ptr-use

This ensures that the wsdl2h-generated type definition is preserved, while the use and ptr-use are
remapped.

This method is useful to serialize dynamic types in C, where elements types int XML carry the
xsi:type attribute.

88

The following example illustrates an ”any” type mapping for the ns:sometype XSD type in a
schema. This type will be replaced with a ”any” type wrapper that supports dynamic serialization
with xsi:type:

[
struct any
{
int type;
void * item;

}
]
xsd anyType = ... | struct any | struct any

where type and item are used to (de)serialize any data type in the wrapper, including base and
its derived types based on xsi:type attribuation.

To support complexType extensions that are dynamically bound in C code, i.e. polymorphic types
based on inheritance hierarchies, we can redeclare the base type of a hierarchy as a wrapper type
and use the type to serialize base or derived types. One addition is needed to support base type
serialization without the use of xsi:type attributes. The absence of this attribute requires the
serialization of the base type.

Basically, we need to be able to both handle a base type and its extensions as per schema exten-
sibility. Say base type ns:base is a complexType that is extended by several other complexTypes.
To implement dynamic binding in C to serialize the base type and derived types, we define:

[
struct ns base
{
int type;
void * item;
struct ns base * self;

}
]
ns base = ... | struct ns base | struct ns base

The self field refers to the element tag (basically a struct member name) to which the ns:base

type is associated. So for example, we see in the soapcpp2-generated output:

struct ns data
{

...
struct ns base name;
...
};

where item represents name when the ns base is serialized with an xsi:type attribute, and self

represents name when the ns base is serialized wwithout an xsi:type attribute. Therefore, the
dynamic binding defaults to struct ns base * self when no dynamic type information in XML is
available.

89

Additional data and function members can be provided to extend a generated struct or class. Class
and struct extensions are of the form:

prefix type = $ member-declaration

For example, to add a constructor and destructor to class myns record:

myns record = $ myns record(); myns record = $ ~myns record();

Type remappings can be given to map a type to another type:

prefix type1 == prefix type2

which replaces prefix type1 by prefix type2 in the wsdl2h output. For example:

SOAP ENC boolean == xsd boolean

where SOAP ENC boolean is mapped to xsd boolean, which in turn may be mapped to a C enum

xsd boolean type or C++ bool type.

9 Using the soapcpp2 Compiler and Code Generator

The soapcpp2 compiler and code generator is invoked from the command line and optionally takes
the name of a header file as an argument or, when the file name is absent, parses the standard
input:

> soapcpp2 [aheaderfile.h]

where aheaderfile.h is a C/C++ header file generated by wsdl2h or developed manually to specify
the SOAP/XML service operations as function prototypes and the C/C++ data types to be auto-
mapped to XML.

The soapcpp2 tool produces C/C++ source files. These files are used to implement SOAP/XML
clients and services, and to implement the advanced XML data binding logic to convert C/C++
data into XML and vice versa.

The type of files generated by soapcpp2 are:

90

File Name
Description

soapStub.h A modified and annotated header file produced from the input header file
soapH.h Main header file to be included by all client and service sources
soapC.cpp Serializers and deserializers for the specified data structures
soapClient.cpp Client stub routines for remote operations
soapServer.cpp Service skeleton routines
soapClientLib.cpp Client stubs combined with local static (de)serializers
soapServerLib.cpp Service skeletons combined with local static (de)serializers
soapXYZProxy.h A C++ proxy object (link with soapC.cpp soapClient.cpp)
soapXYZProxy.h With option -i: proxy object (link with soapC.cpp and soapXYZProxy.cpp)
soapXYZProxy.cpp With option -i: proxy code
soapXYZObject.h A C++ server object (link with soapC.cpp and soapServer.cpp)
soapXYZService.h With option -i: server object (link with soapC.cpp and soapXYZService.cpp)
soapXYZService.cpp With option -i: server code
.xsd An ns.xsd file is generated with an XML Schema for each namespace prefix ns used

by a data structure in the header file input to the compiler, see Section 7.2.9
.wsdl A ns.wsdl file is generated with an WSDL description for each namespace prefix ns

used by a service operation in the header file input to the compiler, see Section 7.2.9
.xml Several SOAP/XML request and response files are generated. These are exam-

ple message files are valid provided that sufficient schema namespace directives
are added to the header file or the generated .nsmap namespace table for the
client/service is not modified by hand

.nsmap A ns.nsmap file is generated for each namespace prefix ns used by a service operation
in the header file input to the compiler, see Section 7.2.9. The file contains a
namespace mapping table that can be used in the client/service sources

Both client and service applications are developed from a header file that specifies the service oper-
ations. If client and service applications are developed with the same header file, the applications
are guaranteed to be compatible because the stub and skeleton routines use the same serializers and
deserializers to encode and decode the parameters. Note that when client and service applications
are developed together, an application developer does not need to know the details of the internal
SOAP encoding used by the client and service.

The soapClientLib.cpp and soapServerLib.cpp can be used to build (dynamic) client and server libraries.
The serialization routines are local (static) to avoid link symbol conflicts. You must create a separate
library for SOAP Header and Fault handling, as described in Section 19.36.

The following files are part of the gSOAP package and are required to build client and service
applications:

File Name Description
stdsoap2.h Header file of stdsoap2.cpp runtime library
stdsoap2.c Runtime C library with XML parser and run-time support routines
stdsoap2.cpp Runtime C++ library identical to stdsoap2.c

9.1 soapcpp2 Options

The soapcpp2 source-to-source compiler supports the following command-line options:

91

Option Description
-1 Generate SOAP 1.1 bindings
-2 Generate SOAP 1.2 bindings
-0 Remove SOAP bindings, use plain REST
-C Generate client-side code only
-S Generate server-side code only
-T Generate server auto-test code
-L Do not generate soapClientLib/soapServerLib
-a Use SOAPAction with WS-Addressing to invoke server-side operations
-A Require SOAPAction to invoke server-side operations
-b serialize byte arrays char[N] as string
-c Generate pure C code
-d <path> Save sources in directory specified by <path>
-e Generate SOAP RPC encoding style bindings
-f N File split of N XML serializer implementations per file
-h Print a brief usage message
-i Generate service proxies and objects inherited from soap struct
-j Generate C++ service proxies and objects that can share a soap struct
-I <path> Use <path> (or paths separated with ‘:’) for #import
-k generate data structure walkers (experimental)
-l Generate linkable modules (experimental)
-m Generate Matlabtm code for MEX compiler
-n When used with -p, enables multi-client and multi-server builds:

Sets compiler option WITH NONAMESPACES, see Section 9.11
Saves the namespace mapping table with name <name> namespaces instead of namespaces
Renames soap serve() into <name> serve() and soap destroy() into <name> destroy()

-p <name> Save sources with file name prefix <name> instead of “soap”
-q <name> Use name for the C++ namespace of all declarations
-s Generates deserialization code with strict XML validation checks
-t Generates code to send typed messages (with the xsi:type attribute)
-u uncomment comments in WSDL/schema output by suppressing XML comments
-v Display version info
-w Do not generate WSDL and schema files
-x Do not generate sample XML message files
-y include C/C++ type access information in sample XML messages
-z1 generate deprecated old-style C++ service proxies and objects

For example

> soapcpp2 -cd ’../projects’ -pmy file.h

Saves the sources:

../projects/myH.h

../projects/myC.c

../projects/myClient.c

../projects/myServer.c

../projects/myStub.h

MS Windows users can use the usual “/” for options, for example:

92

soapcpp2 /cd ’..\projects’ /pmy file.h

Compiler options c, i, n, l, w can be set in the gSOAP header file using the //gsoapopt directive. For
example,

// Generate pure C and do not produce WSDL output:
//gsoapopt cw
int ns myMethod(char*,char**); // takes a string and returns a string

9.2 SOAP 1.1 Versus SOAP 1.2 and Dynamic Switching

gSOAP supports SOAP 1.1 by default. SOAP 1.2 support is automatically turned on when the
appropriate SOAP 1.2 namespace is used, which shows up in the namespace mapping table:

struct Namespace namespaces[] =
{
{”SOAP-ENV”, ”http://www.w3.org/2003/05/soap-envelope”, ... },
{”SOAP-ENC”, ”http://www.w3.org/2003/05/soap-encoding, ... ”},
...

}

Normally the soapcpp2-generated namespace table allows dynamic switching between SOAP 1.1 to
SOAP 1.2 by providing the SOAP 1.2 namespace as a pattern in the third column of a namespace
table:

struct Namespace namespaces[] =
{
{”SOAP-ENV”, ”http://schemas.xmlsoap.org/soap/envelope/”, ”http://www.w3.org/*/soap-encoding”},
{”SOAP-ENC”, ”http://schemas.xmlsoap.org/soap/encoding/”, ”http://www.w3.org/*/soap-envelope”},
...

}

where the “*” in the third column of the namespace URI pattern is a meta wildcard. This is used
to match and accept inbound namespaces.

This way, gSOAP Web services can respond to either SOAP 1.1 or SOAP 1.2 requests. gSOAP
will automatically return SOAP 1.2 responses for SOAP 1.2 requests.

The gSOAP soapcpp2 tool generates a .nsmap file with SOAP-ENV and SOAP-ENC namespace patterns
similar to the above. Since clients issue a send first, they will always use SOAP 1.1 for requests
when the namespace table is similar as shown above. Clients can accept SOAP 1.2 responses by
inspecting the response message.

To use SOAP 1.2 by default and allow SOAP 1.1 messages to be received, use the soapcpp2 -2 option
to generate SOAP 1.2 conformant .nsmap and .wsdl files. Alternatively, add the following line to
your service definitions header file (generated by wsdl2h) for soapcpp2:

#import ”import/soap12.h”

93

Caution: SOAP 1.2 does not support partially transmitted arrays. So the offset field of a dynamic
array is meaningless.

Caution: SOAP 1.2 requires the use of SOAP ENV Code, SOAP ENV Reason, and SOAP ENV Detail

fields in a SOAP ENV Fault fault struct, while SOAP 1.1 uses faultcode, faultstring, and detail fields.
Use soap receiver fault subcode(struct soap *soap, const char *subcode, const char *faultstring, const char

*detail) to set a SOAP 1.1/1.2 fault at the server-side with a fault subcode (SOAP 1.2). Use
soap sender fault subcode(struct soap *soap, const char *subcode, const char *faultstring, const char *detail)

to set a SOAP 1.1/1.2 unrecoverable Bad Request fault at the server-side with a fault subcode
(SOAP 1.2).

9.3 The soapdefs.h Header File

The soapdefs.h header file is included in stdsoap2.h when compiling with option -DWITH SOAPDEFS H:

> c++ -DWITH SOAPDEFS H -c stdsoap2.cpp

The soapdefs.h file allows users to include definitions and add includes without requiring changes to
stdsoap2.h. For example,

// Contents of soapdefs.h
#include <ostream>
#define SOAP BUFLEN 65536 // use large send/recv buffer

The following header file can now refer to ostream:

extern class ostream; // ostream can’t be (de)serialized, but need to be declared to make it visible
to gSOAP
class ns myClass
{ ...

virtual void print(ostream &s) const; // need ostream here
...
};

See also Section 19.3.

9.4 How to Build Modules and Libraries with the #module Directive

The #module directive is used to build modules. A library can be build from a module and linked
with multiple Web services applications. The directive should appear at the top of the header file
and has the following formats:

#module ”name”

and

94

#module ”name” ”fullname”

where name must be a unique short name for the module. The name is case insensitive and MUST
not exceed 4 characters in length. The fullname, when present, represents the full name of the
module.

The rest of the content of the header file includes type declarations and optionally the declarations
of service operations and SOAP Headers/Faults. When the gSOAP soapcpp2 compiler processes
the header file module, it will generate the source codes for a library. The Web services application
that uses the library should use a header file that imports the module with the #import directive.

For example:

/* Contents of module.h */
#module ”test”
long;
char*;
struct ns S
{ ... }

The module.h header file declares a long, char*, and a struct ns X. The module name is ”test”,
so the gSOAP soapcpp2 compiler produces a testC.cpp file with the (de)serializers for these types.
The testC.cpp library can be separately compiled and linked with an application that is built from a
header file that imports ”module.h” using #import ”module.h”. You should also compile testClient.cpp

when you want to build a library that includes the service opertions that you defined in the module
header file.

There are some limitations on a sequence of module imports. A module MUST be imported into
another header to use the module content and you MUST place this import statement before all
other statements in the file, including other imports (except when these are also modules). It is
also advised to put all basic data type definitions in the root module of a module import hierarchy,
e.g. using typedef to declare XSD types (see also Section 11.3).

You cannot use a module alone to build a SOAP or XML application. That is, the final gSOAP
header file in the import chain SHOULD NOT be a module.

When multiple modules are linked, the types that they declare MUST be declared in one module
only to avoid name clashes and link errors. You cannot create two modules that share the same
type declaration and link the modules. When necessary, you should consider creating a module
hierarchy such that types are declared only once and by only one module when these modules must
be linked.

9.5 How to use the #import Directive

The #import directive is used to include gSOAP header files into other gSOAP header files for
processing with the gSOAP compiler soapcpp2. The C #include directive cannot be used to include
gSOAP header files. The #include directive is reserved to control the post-gSOAP compilation
process, see 9.6.

95

The #import directive is used for two purposes: you can use it to include the contents of a header
file into another header file and you can use it to import a module, see 9.4.

An example of the #import directive:

#import ”mydefs.gsoap”
int ns mymethod(xsd string in, xsd int *out);

where ”mydefs.gsoap” is a gSOAP header file that defines xsd string and xsd int:

typedef char *xsd string;
typedef int xsd int;

When importing a module, where the module content is declared with #module, then note that this
module MUST place the import statement before all other statements in the header file, including
other imports (except when these are also modules).

9.6 How to Use #include and #define Directives

The #include and #define directives are normally ignored by the gSOAP soapcpp2 compiler and just
passed on to the generated code. Thus, the gSOAP compiler will not actually parse the contents
of the header files provided by the #include directives in a header file. Instead, the #include and
#define directives will be added to the generated soapH.h header file before any other header file is
included. Therefore, #include and #define directives can be used to control the C/C++ compilation
process of the sources of an application. However, they have no effect on soapcpp2.

The following example header file refers to ostream by including <ostream>:

#include <ostream>
#define WITH COOKIES // use HTTP cookie support (you must compile stdsoap2.cpp with -
DWITH COOKIES)
#define WITH OPENSSL // enable HTTPS/SSL support (you must compile stdsoap2.cpp with
-DWITH OPENSSL)
#define WITH GNUTLS // enable HTTPS/SSL support (you must compile stdsoap2.cpp with -
DWITH GNUTLS)
#define SOAP DEFAULT float FLT NAN // use NaN instead of 0.0
extern class ostream; // ostream can’t be (de)serialized, but need to be declared to make it visible
to gSOAP
class ns myClass
{ ...

virtual void print(ostream &s) const; // need ostream here
...
};

This example also uses #define directives for various settings in the target source code.

Caution: Note that the use of #define in the header file does not automatically result in compiling
stdsoap2.cpp with these directives. You MUST use the -DWITH COOKIES and -DWITH OPENSSL (or
-DWITH GNUTLS options when compiling stdsoap2.cpp before linking the object file with your codes.
As an alternative, you can use #define WITH SOAPDEFS H and put the #define directives in the
soapdefs.h file.

96

9.7 Compiling a SOAP/XML Client Application with soapcpp2

After invoking the gSOAP soapcpp2 tool on a header file description of a service, the client appli-
cation can be compiled on a Linux machine as follows:

> c++ -o myclient myclient.cpp stdsoap2.cpp soapC.cpp soapClient.cpp

Or on a Unix machine:

> c++ -o myclient myclient.cpp stdsoap2.cpp soapC.cpp soapClient.cpp -lsocket -lxnet -lnsl

(Depending on your system configuration, the libraries libsocket.a, libxnet.a, libnsl.a or dynamic *.so

versions of those libraries are required.)

The myclient.cpp file must include soapH.h and must define a global namespace mapping table. A
typical client program layout with namespace mapping table is shown below:

// Contents of file ”myclient.cpp”
#include ”soapH.h”;
...
// A service operation invocation:

soap call some remote method(...);
...
struct Namespace namespaces[] =
{ // {”ns-prefix”, ”ns-name”}
{”SOAP-ENV”, ”http://schemas.xmlsoap.org/soap/envelope/”},
{”SOAP-ENC”, ”http://schemas.xmlsoap.org/soap/encoding/”},
{”xsi”, ”http://www.w3.org/2001/XMLSchema-instance”},
{”xsd”, ”http://www.w3.org/2001/XMLSchema”},
{”ns1”, ”urn:my-remote-method”},
{NULL, NULL}

};
...

A mapping table is generated by the gSOAP soapcpp2 compiler that can be used in the source, see
Section 7.2.9.

9.8 Compiling a SOAP/XML Web Service with soapcpp2

After invoking the gSOAP soapcpp2 tool on a header file description of the service, the server
application can be compiled on a Linux machine as follows:

> c++ -o myserver myserver.cpp stdsoap2.cpp soapC.cpp soapServer.cpp

Or on a Unix machine:

> c++ -o myserver myserver.cpp stdsoap2.cpp soapC.cpp soapServer.cpp -lsocket -lxnet -lnsl

97

(Depending on your system configuration, the libraries libsocket.a, libxnet.a, libnsl.a or dynamic *.so

versions of those libraries are required.)

The myserver.cpp file must include soapH.h and must define a global namespace mapping table. A
typical service program layout with namespace mapping table is shown below:

// Contents of file ”myserver.cpp”
#include ”soapH.h”;
int main()
{

soap serve(soap new());
}
...
// Implementations of the service operations as C++ functions
...
struct Namespace namespaces[] =
{ // {”ns-prefix”, ”ns-name”}
{”SOAP-ENV”, ”http://schemas.xmlsoap.org/soap/envelope/”},
{”SOAP-ENC”, ”http://schemas.xmlsoap.org/soap/encoding/”},
{”xsi”, ”http://www.w3.org/2001/XMLSchema-instance”},
{”xsd”, ”http://www.w3.org/2001/XMLSchema”},
{”ns1”, ”urn:my-remote-method”},
{NULL, NULL}
};
...

When the gSOAP service is compiled and installed as a CGI application, the soap serve function
acts as a service dispatcher. It listens to standard input and invokes the method via a skeleton
routine to serve a SOAP client request. After the request is served, the response is encoded in
SOAP and send to standard output. The method must be implemented in the server application
and the type signature of the method must be identical to the service operations specified in the
header file. That is, the function prototype in the header file must be a valid prototype of the
method implemented as a C/C++ function.

9.9 Compiling Web Services and Clients in ANSI C

The gSOAP soapcpp2 compiler can be used to create pure C Web services and clients. The gSOAP
stub and skeleton compiler soapcpp2 generates .cpp files by default. The compiler generates .c files
with the -c option. However, these files only use C syntax and data types if the header file input
to soapcpp2 uses C syntax and data types. For example:

> soapcpp2 -c quote.h
> cc -o quote quote.c stdsoap2.c soapC.c soapClient.c

Warnings will be issued by the compiler when C++ class declarations occur in the header file.

98

9.10 Limitations of gSOAP

gSOAP is SOAP 1.1 and SOAP 1.2 compliant and supports SOAP RPC and document/literal
operations.

From the perspective of the C/C++ language, a few C++ language features are not supported by
gSOAP and these features cannot be used in the specification of SOAP service operations.

There are certain limitations for the following C++ language constructs:

STL and STL templates The gSOAP soapcpp2 compiler supports C++ strings std::string and
std::wstring (see Section 11.3.6) and the STL containers std::deque, std::list, std::vector, and std::set,
(see Section 11.11.8).

Templates The gSOAP soapcpp2 compiler is a preprocessor that cannot determine the template
instantiations used by the main program, nor can it generate templated code. You can
however implement containers similar to the STL containers.

Multiple inheritance Single class inheritance is supported. Multiple inheritance cannot be sup-
ported due to limitations of the SOAP protocol.

Abstract methods A class must be instantiatable to allow decoding of instances of the class.

Directives Directives and pragmas such as #include and #define are interpreted by the gSOAP
soapcpp2 compiler. However, the interpretation is different compared to the usual handling of
directives, see Section 9.6. If necessary, a traditional C++ preprocessor can be used for the
interpretation of directives. For example, Unix and Linux users can use “cpp -B” to expand
the header file, e.g. cpp -B myfile.h | soapcpp2. Use the gSOAP #import directive to import
gSOAP header files, see 9.5.

C and C++ programming statements All class methods of a class should be declared within
the class declaration in the header file, but the methods should not be implemented in code.
All class method implementations must be defined within another C++ source file and linked
to the application.

The following data types require some attention to ensure they are serialized:

union types A union data type can not be serialized unless run-time information is associated with
a union in a struct/class as discussed in Section 11.7. An alternative is to use a struct with
a pointer type for each field. Because NULL pointers are not encoded, the resulting encoding
will appear as a union type if only one pointer field is valid (i.e. non-NULL) at the time that
the data type is encoded.

void and void* types The void data type cannot be serialized unless run-time type information is
associated with the pointer using a int type field in the struct/class that contains the void*.
The void* data type is typically used to point to some object or to some array of some type
of objects at run-time. The compiler cannot determine the type of data pointed to and the
size of the array pointed to. A struct or class with a void* field can be augmented to support
the (de)serialization of the void* using a int type field as described in Section 11.9.

99

Pointers to sequences of elements in memory Any pointer, except for C strings which are
pointers to a sequence of characters, are treated by the compiler as if the pointer points
to only one element in memory at run-time. Consequently, the encoding and decoding
routines will ignore any subsequent elements that follow the first in memory. For the same
reason, arrays of undetermined length, e.g. float a[] cannot be used. gSOAP supports dynamic
arrays using a special type convention, see Section 11.11.

Uninitialized pointers Obviously, all pointers that are part of a data structure must be valid or
NULL to enable serialization of the data structure at run time.

There are a number of programming solutions that can be adopted to circumvent these limitations.
Instead of using void*, a program can in some cases be modified to use a pointer to a known type.
If the pointer is intended to point to different types of objects, a generic base class can be declared
and the pointer is declared to point to the base class. All the other types are declared to be derived
classes of this base class. For pointers that point to a sequence of elements in memory dynamic
arrays should be used instead, see 11.11.

9.11 Library Build Flags

The following macros (#defines) can be used to enable certain optional features when building the
libgsoap library or when compiling and linking stdsoap2.c and stdsoap2.cpp:

100

Macro Description
WITH SOAPDEFS H includes the soapdefs.h file for custom settings, see Section 9.3
WITH COOKIES enables HTTP cookies, see Sections 19.28 19.29
WITH OPENSSL enables OpenSSL, see Sections 19.22 19.21
WITH GNUTLS enables GNUTLS, see Sections 19.22 19.21
WITH IPV6 enables IPv6 support (compile ALL sources with this macro set)
WITH IPV6 V6ONLY IPv6-only server option (compile ALL sources with this macro set)
WITH NO IPV6 V6ONLY resets IPv6-only server option (compile ALL sources with this macro set)
WITH TCPFIN use TCP FIN after sends when socket is ready to close
WITH FASTCGI enables FastCGI, see Sections 19.31
WITH GZIP enables gzip and deflate compression, see Section 19.27
WITH ZLIB enables deflate compression only, see Section 19.27
WITH FAST (obsolete)
WITH NOIO eliminates need for file IO and BSD socket library, see Section 19.33
WITH NOIDREF eliminates href/ref and id attributes to (de)serialize multi-ref data,

or alternatively use the SOAP XML TREE runtime flag
WITH NOHTTP eliminates HTTP stack to reduce code size
WITH NOZONE silently ignores the timezone in time conversions
WITH LEAN creates a small-footprint executable, see Section 19.32
WITH LEANER creates an even smaller footprint executable, see Section 19.32
WITH COMPAT removes dependency on C++ stream libraries, eliminating C++ exceptions
WITH NONAMESPACES removes dependence on global namespaces table, MUST set it

explicitly with soap set .namespaces()
see also Section 10.4

WITH PURE VIRTUAL for C++ abstract service classes with pure virtual methods
WITH NOEMPTYSTRUCT inserts a dummy member in empty structs to allow compilation
WITH NOGLOBAL omit SOAP Header and Fault serialization code
WITH NOCDATA do not retain the parsed CDATA sections in literal XML strings (no conversion)
WITH CDATA retain the parsed CDATA sections in literal XML strings (no conversion, by default)
WITH C LOCALE use locale functions when available to ensure locale-independent

number conversions (force the use of C locale)
WITH CASEINSENSITIVETAGS enable case insensitive XML parsing

Other compile-time flags:

Macro Description
SOCKET CLOSE ON EXIT prevents a server port from staying in listening mode after exit

by internally setting fcntl(sock, F SETFD, FD CLOEXEC)

Compile-time flags to change the default engine settings:

Macro Description
SOAP BUFLEN the length of the internal message buffer (affects socket comms)
SOAP TAGLEN maximum length of XML tags and URL domain names (buffering)
SOAP SSL RSA BITS the length of the RSA key (2048 by default)
SOAP UNKNOWN CHAR an 8 bit code that represents a character that could not be converted

to an ASCII char (e.g. from Unicode, applicable when SOAP C UTFSTRING is off)

Caution: it is important that all of these macros MUST be consistently defined to compile all
sources, such as stdsoap2.cpp, soapC.cpp, soapClient.cpp, soapServer.cpp, and all application sources that
include stdsoap2.h or soapH.h. If the macros are not consistently used, the application will crash due
to a mismatches in the declaration and access of the gSOAP context.

101

9.12 Run Time Flags

gSOAP provides flags to control the input and output mode settings at runtime. These flags are
divided into four categories: transport (IO), content encoding (ENC), XML marshalling (XML),
and C/C++ data mapping (C).

Although gSOAP is fully SOAP 1.1 compliant, some SOAP implementations may have trouble
accepting multi-reference data and/or require explicit nil data so these flags can be used to put
gSOAP in “safe mode”. In addition, the embedding (or inlining) of multi-reference data is adopted
in the SOAP 1.2 specification, which gSOAP automatically supports when handling with SOAP
1.2 messages.

To set and clear flags for inbound message processing use:

soap set imode(soap, inflag);
soap clr imode(soap, inflag);

To set and clear the flags for outbound message processing use:

soap set omode(soap, outflag);
soap clr imode(soap, outflag);

To allocate and initialize a gSOAP context with inbound and outbound flags use:

soap new2(soap, inflag, outflag);

To initialize an unitialized gSOAP context with inbound and outbound flags use:

soap init2(soap, inflag, outflag);

The input-mode and output-mode flags for inbound and outbound message processing are:

102

Flag Description
SOAP IO FLUSH in: disable buffering and flush output (default for all file-based output)
SOAP IO BUFFER in: enable buffering (default for all socket-oriented connections)
SOAP IO STORE in: store entire message to calculate HTTP content length
SOAP IO CHUNK out: use HTTP chunking
SOAP IO LENGTH out: (internal flag) require apriori calculation of content length
SOAP IO KEEPALIVE in&out: attempt to keep socket connections alive (open)
SOAP IO UDP in&out: use UDP (datagram) transport, maximum message length is SOAP BUFLEN
SOAP ENC XML out: use plain XML encoding without HTTP headers (useful with SOAP ENC ZLIB)
SOAP ENC DIME out: use DIME encoding (automatic when DIME attachments are used)
SOAP ENC MIME out: use MIME encoding (activate using soap set mime)
SOAP ENC MTOM out: use MTOM XOP attachments (instead of DIME)
SOAP ENC ZLIB out: compress encoding with Zlib (deflate or gzip format)
SOAP ENC SSL in&out: encrypt with SSL (automatic with ”https:” endpoints)
SOAP XML INDENT out: produces indented XML output
SOAP XML CANONICAL out: produces canonical XML output
SOAP XML DEFAULTNS out: produces xmlns=”. . . ” default binding namespaced output
SOAP XML IGNORENS in: ignores the use of XML namespaces in input
SOAP XML STRICT in: XML strict validation
SOAP XML TREE out: serialize data as XML trees (no multi-ref, duplicate data when necessary)

in: ignore id attributes (do not resolve id-ref)
SOAP XML GRAPH out: serialize data as an XML graph with inline multi-ref (SOAP 1.2 default)
SOAP XML NIL out: serialize NULL data as xsi:nil attributed elements
SOAP XML NOTYPE out: disable xsi:type attributes
SOAP C NOIOB in: do not fault with SOAP IOB
SOAP C UTFSTRING in&out: (de)serialize 8-bit strings “as is” (strings MUST have UTF-8 encoded content)
SOAP C MBSTRING in&out: enable multibyte character support (depends on locale)
SOAP C NILSTRING out: serialize empty strings as nil (ommited element)

The flags can be selectively turned on/off at any time, for example when multiple Web services are
accessed by a client that require special treatment.

All flags are orthogonal, except SOAP IO FLUSH, SOAP IO BUFFER, SOAP IO STORE, and SOAP IO CHUNK

which are enumerations and only one of these I/O flags can be used. Also the XML serialization
flags SOAP XML TREE and SOAP XML GRAPH should not be mixed.

The flags control the inbound and outbound message transport, encoding, and (de)serialization.
The following functions are used to set and reset the flags for input and output modes:

Function Description
soap init2(struct soap *soap, int imode, int omode) Initialize the runtime and set flags
soap imode(struct soap *soap, int imode) Set all input mode flags
soap omode(struct soap *soap, int omode) Set all output mode flags
soap set imode(struct soap *soap, int imode) Enable input mode flags
soap set omode(struct soap *soap, int omode) Enable output mode flags
soap clr imode(struct soap *soap, int omode) Disable input mode flags
soap clr omode(struct soap *soap, int omode) Disable output mode flags

The default setting is SOAP IO DEFAULT for both input and output modes.

For example

struct soap soap;

103

soap init2(&soap, SOAP IO KEEPALIVE,
SOAP IO KEEPALIVE|SOAP ENC ZLIB|SOAP XML TREE|SOAP XML CANONICAL);

if (soap call ns myMethod(&soap, ...))
...

sends a compressed client request with keep-alive enabled and all data serialized as canonical XML
trees.

In many cases, setting the input mode will have no effect, especially with HTTP transport be-
cause gSOAP will determine the optimal input buffering and the encoding used for an inbound
message. The flags that have an effect on handling inbound messages are SOAP IO KEEPALIVE,
SOAP ENC SSL (but automatic when ”https:” endpoints are used or soap ssl accept), SOAP C NOIOB,
SOAP C UTFSTRING, and SOAP C MBSTRING.

Caution: The SOAP XML TREE serialization flag can be used to improve interoperability with
SOAP implementations that are not fully SOAP 1.1 compliant. However, a tree serialization will
duplicate data when necessary and will crash the serializer for cyclic data structures.

9.13 Memory Management

Understanding gSOAP’s run-time memory management is important to optimize client and service
applications by eliminating memory leaks and/or dangling references.

There are two forms of dynamic (heap) allocations made by gSOAP’s runtime for serialization and
deserialization of data. Temporary data is created by the runtime such as hash tables to keep
pointer reference information for serialization and hash tables to keep XML id/href information for
multi-reference object deserialization. Deserialized data is created upon receiving SOAP messages.
This data is stored on the heap and requires several calls to the malloc library function to allocate
space for the data and new to create class instances. All such allocations are tracked by gSOAP’s
runtime by linked lists for later deallocation. The linked list for malloc allocations uses some extra
space in each malloced block to form a chain of pointers through the malloced blocks. A separate
malloced linked list is used to keep track of class instance allocations.

If you want to preserve the deserialized data before deleting a soap context, you can assign
management of the data and delegate responsibility of deletion to another soap context using
soap delegate deletion(struct soap *soap from, struct soap *soap to). This moves all deserialized and
temporary data to the other soap context soap to, which will delete its data and all the delegated
data it is responsible for when you call soap destroy and soap end. This can be particularly useful for
making client calls inside a server operation, i.e. a mixed server/client. The client call inside the
server operation requires a new soap context, e.g. copied from the server’s with soap copy. Before
destroying the client context with soap free, the data can be delegated to the server’s context with
soap delegate deletion. See samples/mashup/machupserver.c code for an example.

Note that gSOAP does not per se enforce a deallocation policy and the user can adopt a deallocation
policy that works best for a particular application. As a consequence, deserialized data is never
deallocated by the gSOAP runtime unless the user explicitly forces deallocation by calling functions
to deallocate data collectively or individually.

The deallocation functions are:

104

Function Call Description
soap destroy(struct soap *soap) Remove all dynamically allocated C++ objects.

must be called before soap end()
soap end(struct soap *soap) Remove temporary data and deserialized data except

class instances
soap free temp(struct soap *soap) Instead of soap destroy and soap end:

remove temporary data only
soap dealloc(struct soap *soap, void *p) Remove malloced data at p. When p==NULL: remove all

dynamically allocated (deserialized) data except class instances
soap delete(struct soap *soap, void *p) Remove class instance at p. When p==NULL: remove all

dynamically allocated (deserialized) class instances
(this is identical to calling soap destroy(struct soap *soap))

soap unlink(struct soap *soap, void *p) Unlink data/object at p from gSOAP’s deallocation chain
so gSOAP won’t deallocate it

soap done(struct soap *soap) Detach context (reset runtime context)
soap free(struct soap *soap) Detach and free context (allocated with soap new)

Temporary data (i.e. the hash tables) are automatically removed with calls to the soap free temp

function which is also made by soap end and soap done or when the next call to a stub or skeleton
routine is made to send a message or receive a message. Deallocation of non-class based data is
straightforward: soap end removes all dynamically allocated deserialized data (data allocated with
soap malloc. That is, when the client/service application does not use any class instances that are
(de)marshalled, but uses structs, arrays, etc., then calling the soap end function is safe to remove
all deserialized data. The function can be called after processing the deserialized data of a service
operation call or after a number of service operation calls have been made. The function is also
typically called after soap serve, when the service finished sending the response to a client and the
deserialized client request data can be removed.

Individual data objects can be unlinked from the deallocation chain if necessary, to prevent deal-
location by the collective soap end or soap destroy functions.

9.13.1 Memory Allocation and Management Policies

There are three situations to consider for memory deallocation policies for class instances:

1. the program code deletes the class instances and the class destructors in turn SHOULD delete
and free any dynamically allocated data (deep deallocation) without calling the soap end and
soap destroy functions,

2. or the class destructors SHOULD NOT deallocate any data and the soap end and soap destroy

functions can be called to remove the data.

3. or the class destructors SHOULD mark their own deallocation and mark the deallocation
of any other data deallocated by it’s destructors by calling the soap unlink function. This
allows soap destroy and soap end to remove the remaining instances and data without causing
duplicate deallocations.

It is advised to use pointers to class instances that are used within other structs and classes to avoid
the creation of temporary class instances during deserialization. The problem with temporary class

105

instances is that the destructor of the temporary may affect data used by other instances through
the sharing of data parts accessed with pointers. Temporaries and even whole copies of class
instances can be created when deserializing SOAP multi-referenced objects. A dynamic array of
class instances is similar: temporaries may be created to fill the array upon deserialization. To
avoid problems, use dynamic arrays of pointers to class instances. This also enables the exchange
of polymorphic arrays when the elements are instances of classes in an inheritance hierarchy. In
addition, allocate data and class instances with soap malloc and soap new X functions (more details
below).

To summarize, it is advised to pass class data types by pointer to a service operation. For example:

class X { ... };
ns remoteMethod(X *in, ...);

Response elements that are class data types can be passed by reference, as in:

class X { ... };
class ns remoteMethodResponse { ... };
ns remoteMethod(X *in, ns remoteMethodResponse &out);

But dynamic arrays declared as class data types should use a pointer to a valid object that will be
overwritten when the function is called, as in:

typedef int xsd int;
class X { ... };
class ArrayOfint { xsd int * ptr; int size; };
ns remoteMethod(X *in, ArrayOfint *out);

Or a reference to a valid or NULL pointer, as in:

typedef int xsd int;
class X { ... };
class ArrayOfint { xsd int * ptr; int size; };
ns remoteMethod(X *in, ArrayOfint *&out);

The gSOAP memory allocation functions can be used in client and/or service code to allocate
temporary data that will be automatically deallocated. These functions are:

Function Call Description
void *soap malloc(struct soap *soap, size t n) return pointer to n bytes
Class *soap new Class(struct soap *soap) instantiate Class
Class *soap new Class(struct soap *soap, int n) instantiate array of n objects
Class *soap new set Class(struct soap *soap, m1, . . . , mn) instantiate and set members mi

Class *soap new req Class(struct soap *soap, m1, . . . , mn) instantiate and set required-only mi

The soap new X functions are generated by the gSOAP soapcpp2 compiler for every class X in the
header file.

Space allocated with soap malloc will be released with the soap end and soap dealloc functions. All
objects instantiated with soap new X(struct soap*) are removed altogether with soap destroy(struct

soap*). To remove just a single object, use soap delete X(struct soap*, X*).

For example, the following service uses temporary data in the service operation implementation:

106

int main()
{ ...

struct soap soap;
soap init(&soap);
soap serve(&soap);
soap end(&soap);
...
}

An example service operation that allocates a temporary string is:

int ns itoa(struct soap *soap, int i, char **a)
{

a = (char)soap malloc(soap, 11);
sprintf(*a, ”%d”, i);
return SOAP OK;
}

This temporary allocation can also be used to allocate strings for the SOAP Fault data structure.
For example:

int ns mymethod(...)
{ ...

if (exception)
{

char *msg = (char*)soap malloc(soap, 1024); // allocate temporary space for detailed message
sprintf(msg, ”...”, ...); // produce the detailed message
return soap receiver fault(soap, ”An exception occurred”, msg); // return the server-side fault

}
...
}

Use soap receiver fault(struct soap *soap, const char *faultstring, const char *detail) to set a SOAP 1.1/1.2
fault at the server-side. Use soap sender fault(struct soap *soap, const char *faultstring, const char *detail)

to set a SOAP 1.1/1.2 unrecoverable Bad Request fault at the server-side. Sending clients are not
supposed to retry messages after a Bad Request, while errors at the receiver-side indicate temporary
problems.

The above functions do not include a SOAP 1.2 Subcode element. To include Subcode element, use
soap receiver fault subcode(struct soap *soap, const char *subcode, const char *faultstring, const char *detail)

to set a SOAP 1.1/1.2 fault with Subcode at the server-side. Use soap sender fault subcode(struct

soap *soap, const char *subcode, const char *faultstring, const char *detail) to set a SOAP 1.1/1.2
unrecoverable Bad Request fault with Subcode at the server-side.

gSOAP provides a function to duplicate a string into gSOAP’s memory space:

char *soap strdup(struct soap *soap, const char *s)

The function allocates space for s with soap malloc, copies the string, and returns a pointer to the
duplicated string. When s is NULL, the function does not allocate and copy the string and returns
NULL.

107

9.13.2 Intra-Class Memory Management

When a class declaration has a struct soap * field, this field will be set to point to the current
gSOAP runtime context by gSOAP’s deserializers and by the soap new Class functions. This sim-
plifies memory management for class instances. The struct soap* pointer is implicitly set by the
gSOAP deserializer for the class or explicitly by calling the soap new X function for class X. For
example:

class Sample
{ public:

struct soap *soap; // reference to gSOAP’s run-time
...
Sample();
˜Sample();
};

The constructor and destructor for class Sample are:

Sample::Sample()
{ this->soap = NULL;
}
Sample::˜Sample()
{ soap unlink(this->soap, this);
}

The soap unlink() call removes the object from gSOAP’s deallocation chain. In that way, soap destroy

can be safely called to remove all class instances. The following code illustrates the explicit creation
of a Sample object and cleanup:

struct soap *soap = soap new(); // new gSOAP runtime
Sample *obj = soap new Sample(soap); // new Sample object with obj->soap set to runtime
...
delete obj; // also calls soap unlink to remove obj from the deallocation chain
soap destroy(soap); // deallocate all (other) class instances
soap end(soap); // clean up

Here is another example:

class ns myClass
{ ...

struct soap *soap; // set by soap new ns myClass()
char *name;
void setName(const char *s);
...
};

Calls to soap new ns myClass(soap) will set the soap field in the class instance to the current gSOAP
context. Because the deserializers invoke the soap new functions, the soap field of the ns myClass

instances are set as well. This mechanism is convenient when Web Service methods need to return
objects that are instantiated in the methods. For example

108

int ns myMethod(struct soap *soap, ...)
{

ns myClass *p = soap new ns myClass(soap);
p->setName(”SOAP”);
return SOAP OK;
}
void ns myClass::ns setName(const char *s)
{

if (soap)
name = (char*)soap malloc(soap, strlen(s)+1);

else
name = (char*)malloc(strlen(s)+1);

strcpy(name, s);
}
ns myClass::ns myClass()
{

soap = NULL;
name = NULL;
}
ns myClass::˜ns myClass()
{

if (!soap && name) free(name);
soap unlink(soap, this);
}

Calling soap destroy right after soap serve in the Web Service will destroy all dynamically allocated
class instances.

9.14 Debugging

To activate message logging for debugging, un-comment the #define DEBUG directive in stdsoap2.h.
Compile the client and/or server applications as described above (or simply use c++ -DDEBUG ...

to compile with debugging activated). When the client and server applications run, they will log
their activity in three separate files:

File Description
SENT.log The SOAP content transmitted by the application
RECV.log The SOAP content received by the application
TEST.log A log containing various activities performed by the application

Caution: The client and server applications may run slow due to the logging activity.

Caution: When installing a CGI application on the Web with debugging activated, the log files may
sometimes not be created due to file access permission restrictions imposed on CGI applications.
To get around this, create empty log files with universal write permissions. Be careful about the
security implication of this.

You can test a service CGI application without deploying it on the Web. To do this, create a client
application for the service and activate message logging by this client. Remove any old SENT.log file
and run the client (which connects to the Web service or to another dummy, but valid address) and

109

copy the SENT.log file to another file, e.g. SENT.tst. Then redirect the SENT.tst file to the service
CGI application. For example,

> ./myservice.cgi < SENT.tst

This should display the service response on the terminal.

The file names of the log files and the logging activity can be controlled at the application level.
This allows the creation of separate log files by separate services, clients, and threads. For example,
the following service logs all SOAP messages (but no debug messages) in separate directories:

struct soap soap;
soap init(&soap);
...
soap set recv logfile(&soap, ”logs/recv/service12.log”); // append all messages received in /logs/recv/service12.log
soap set sent logfile(&soap, ”logs/sent/service12.log”); // append all messages sent in /logs/sent/service12.log
soap set test logfile(&soap, NULL); // no file name: do not save debug messages
...
soap serve(&soap);
...

Likewise, messages can be logged for individual client-side service operation calls.

9.15 Generating an Auto Test Server for Client Testing

The soapcpp2 -T option generates an auto-test server application in soapTester.cpp, which is to be
compiled and linked with the code generated for a server implementation, i.e. soapServer.cpp (or with
the generated server object class) and soapC.cpp. The feature also supports C, so use the soapcpp2

-c option to generate C.

The auto-test server can be used to test a client application. Suppose the generated code is
compiled into the executable named tester (compile soapServer.cpp, soapC.cpp, and stdsoap2.cpp or link
libgsoap++). We can use the IO redirect to “send” it a message saved in a file, for example one of
the sample request messages generated by soapcpp2:

> ./tester < example.req.xml

which then returns the response with default XML values displayed on the terminal.

To run the auto test service on a port to test a client against, use two command-line arguments. The
first argument is the OR-ed values of the gSOAP runtime context flags such as SOAP IO KEEPALIVE

(0x10 = 16) and the second argument is the port number:

> ./tester 16 8080

This starts an iterative stand-alone server on port 8080. This way, messages can be sent to
http://localhost:8080 to test the client. The data in the response messages are copied from
the request messages when possible, or XML default values, or empty otherwise.

110

9.16 Required Libraries

• The socket library is essential and requires the inclusion of the appropriate libraries with the
compile command for Sun Solaris systems:

> c++ -o myclient myclient.cpp stdsoap2.cpp soapC.cpp soapClient.cpp -lsocket -lxnet -lnsl

These library loading options are not required with Linux.

• The gSOAP runtime uses the math library for the NaN, INF, and -INF floating point repre-
sentations. The library is not strictly necessary and the <math.h> header file import can be
commented out from the stdsoap2.h header file. The application can be linked without the -lm

math library e.g. under Sun Solaris:

> c++ -o myclient myclient.cpp stdsoap2.cpp soapC.cpp soapClient.cpp -lsocket -lxnet -lnsl

10 The gSOAP Service Operation Specification Format

A service operation is specified as a C/C++ function prototype in a header file. The function is
REQUIRED to return int, which is used to represent a SOAP error code, see Section 10.2. Multiple
service operations MAY be declared together in one header file.

The general format of a service operation specification is:

[int] [namespace prefix]method name([inparam1, inparam2, ...,] outparam);

where

namespace prefix is the optional namespace prefix of the method (see identifier translation rules 10.3)

method name it the service operation name (see identifier translation rules 10.3)

inparam is the declaration of an input parameter of the service operation

outparam is the declaration of the output parameter of the service operation

This simple form can only pass a single, non-struct and non-class type output parameter. See 10.1 for
passing multiple output parameters. The name of the declared function namespace prefix method name

must be unique and cannot match the name of a struct, class, or enum declared in the same header
file.

The method request is encoded in SOAP as an XML element and the namespace prefix, method
name, and input parameters are encoded using the format:

<[namespace-prefix:]method name xsi:type="[namespace-prefix:]method name>
<inparam-name1 xsi:type="...">...</inparam-name1>
<inparam-name2 xsi:type="...">...</inparam-name2>
...
</[namespace-prefix:]method name>

111

where the inparam-name accessors are the element-name representations of the inparam parameter
name declarations, see Section 10.3. (The optional parts are shown enclosed in [].)

The XML response by the Web service is of the form:

<[namespace-prefix:]method-nameResponse xsi:type="[namespace-prefix:]method-nameResponse>
<outparam-name xsi:type="...">...</outparam-name>
</[namespace-prefix:]method-nameResponse>

where the outparam-name accessor is the element-name representation of the outparam parameter
name declaration, see Section 10.3. By convention, the response element name is the method name
ending in Response. See 10.1 on how to change the declaration if the service response element name
is different.

The gSOAP soapcpp2 tool generates a stub routine for the service operation. This stub is of the
form:

int soap call [namespace prefix]method name(struct soap *soap, char *URL, char *action, [inparam1,
inparam2, ...,] outparam);

This proxy can be called by a client application to perform the service operation call.

The gSOAP soapcpp2 tool generates a skeleton routine for the service operation. The skeleton
function is:

int soap serve [namespace prefix]method name(struct soap *soap);

The skeleton routine, when called by a service application, will attempt to serve a request on
the standard input. If no request is present or if the request does not match the method name,
SOAP NO METHOD is returned. The skeleton routines are automatically called by the generated
soap serve routine that handles all requests.

10.1 Service Operation Parameter Passing

The input parameters of a service operation MUST be passed by value. Input parameters cannot
be passed by reference with the & reference operator, but an input parameter value MAY be passed
by a pointer to the data. Of course, passing a pointer to the data is preferred when the size of the
data of the parameter is large. Also, to pass instances of (derived) classes, pointers to the instance
need to be used to avoid passing the instance by value which requires a temporary and prohibits
passing derived class instances. When two input parameter values are identical, passing them using
a pointer has the advantage that the value will be encoded only once as multi-reference (hence, the
parameters are aliases). When input parameters are passed using a pointer, the data pointed to
will not be modified by the service operation and returned to the caller.

The output parameter MUST be passed by reference using & or by using a pointer. Arrays are
passed by reference by default and do not require the use of the reference operator &.

The input and output parameter types have certain limitations, see Section 9.10

If the output parameter is a struct or class type, it is considered a service operation response element
instead of a simple output parameter value. That is, the name of the struct or class is the name of

112

the response element and the struct or class fields are the output parameters of the service operation,
see also 7.1.7. Hence, if the output parameter has to be a struct or class, a response struct or class

MUST be declared as well. In addition, if a service operation returns multiple output parameters,
a response struct or class MUST be declared. By convention, the response element is the service
operation name ending with “Response”.

The general form of a response element declaration is:

struct [namespace prefix]response element name
{

outparam1;
outparam2;
...
};

where

namespace prefix is the optional namespace prefix of the response element (see identifier translation
rules 10.3)

response element name it the name of the response element (see identifier translation rules 10.3)

outparam is the declaration of an output parameter of the service operation

The general form of a service operation specification with a response element declaration for (mul-
tiple) output parameters is:

[int] [namespace prefix]method name([inparam1, inparam2, ...,] struct [namespace prefix]response element name
{outparam1[, outparam2, ...]} &anyparam);

The choice of name for anyparam has no effect on the SOAP encoding and decoding and is only used
as a place holder for the response.

The method request is encoded in SOAP as an independent element and the namespace prefix,
method name, and input parameters are encoded using the format:

<[namespace-prefix:]method-name xsi:type="[namespace-prefix:]method-name>
<inparam-name1 xsi:type="...">...</inparam-name1>
<inparam-name2 xsi:type="...">...</inparam-name2>
...
</[namespace-prefix:]method-name>

where the inparam-name accessors are the element-name representations of the inparam parameter
name declarations, see Section 10.3. (The optional parts resulting from the specification are shown
enclosed in [].)

The method response is expected to be of the form:

<[namespace-prefix:]response-element-name xsi:type="[namespace-prefix:]response-element-name>
<outparam-name1 xsi:type="...">...</outparam-name1>
<outparam-name2 xsi:type="...">...</outparam-name2>
...
</[namespace-prefix:]response-element-name>

113

where the outparam-name accessors are the element-name representations of the outparam parameter
name declarations, see Section 10.3. (The optional parts resulting from the specification are shown
enclosed in [].)

The input and/or output parameters can be made anonymous, which allows the deserialization of
requests/responses with different parameter names as is endorsed by the SOAP 1.1 specification,
see Section 7.1.13.

10.2 Error Codes

The error codes returned by the stub and skeleton routines are listed below.

114

Code Description
SOAP OK No error

SOAP CLI FAULT* The service returned a client fault (SOAP 1.2 Sender fault)
SOAP SVR FAULT* The service returned a server fault (SOAP 1.2 Receiver fault)

SOAP TAG MISMATCH An XML element didn’t correspond to anything expected
SOAP TYPE An XML Schema type mismatch

SOAP SYNTAX ERROR An XML syntax error occurred on the input
SOAP NO TAG Begin of an element expected, but not found

SOAP IOB Array index out of bounds
SOAP MUSTUNDERSTAND* An element needs to be ignored that need to be understood

SOAP NAMESPACE Namespace name mismatch (validation error)
SOAP FATAL ERROR Internal error
SOAP USER ERROR User error (reserved for soap.user usage

SOAP FAULT An exception raised by the service
SOAP NO METHOD The dispatcher did not find a matching operation for a request

SOAP NO DATA No data in HTTP message
SOAP GET METHOD HTTP GET operation not handled, see Section 19.10

SOAP EOM Out of memory
SOAP MOE Memory overflow/corruption error (DEBUG mode)

SOAP NULL An element was null, while it is not supposed to be null
SOAP DUPLICATE ID Element’s ID duplicated (multi-ref encoding)

SOAP MISSING ID Element ID missing for an href/ref (multi-ref encoding)
SOAP HREF Reference to object is incompatible with the object refered to

SOAP UTF ERROR An UTF-encoded message decoding error occured
SOAP UDP ERROR Message too large to store in UDP packet
SOAP TCP ERROR A connection error occured

SOAP HTTP ERROR An HTTP error occured
SOAP NTLM ERROR An NTLM authentication handshake error occured

SOAP SSL ERROR An SSL error occured
SOAP ZLIB ERROR A Zlib error occured

SOAP PLUGIN ERROR Failed to register plugin
SOAP MIME ERROR MIME parsing error

SOAP MIME HREF MIME attachment has no href from SOAP body error
SOAP MIME END End of MIME attachments protocol error

SOAP DIME ERROR DIME parsing error
SOAP DIME END End of DIME attachments protocol error

SOAP DIME HREF DIME attachment has no href from SOAP body
(and no DIME callbacks were defined to save the attachment)

SOAP DIME MISMATCH DIME version/transmission error
SOAP VERSIONMISMATCH* SOAP version mismatch or no SOAP message

SOAP DATAENCODINGUNKNOWN SOAP 1.2 DataEncodingUnknown fault
SOAP REQUIRED Attributed required validation error

SOAP PROHIBITED Attributed prohibited validation error
SOAP OCCURS Element minOccurs/maxOccurs validation error
SOAP LENGTH Element length validation error

SOAP FD EXCEEDED Too many open sockets
(for non-win32 systems not supporting poll())

SOAP EOF Unexpected end of file, no input, or timeout receiving data
SOAP ERR Error (for internal use)

115

The error codes that are returned by a stub routine (proxy) upon receiving a SOAP Fault from the
server are marked (*). The remaining error codes are generated by the proxy itself as a result of
problems with a SOAP payload. The error code is SOAP OK when the service operation call was
successful (the SOAP OK predefined constant is guaranteed to be 0). The error code is also stored
in soap.error, where soap is a variable that contains the current runtime context. The function
soap print fault(struct soap *soap, FILE *fd) can be called to display an error message on fd where
current value of the soap.error variable is used by the function to display the error. The function
soap print fault location(struct soap *soap, FILE *fd) prints the location of the error if the error is a
result from parsing XML. Use soap sprint fault(struct soap*, char *buf, size t len) to print the error to
a string.

A service operation implemented in a SOAP service MUST return an error code as the function’s
return value. SOAP OK denotes success and SOAP FAULT denotes an exception. The exception
details can be assigned with the soap receiver fault(struct soap *soap, const char *faultstring, const

char *detail) which sets the strings soap.fault->faultstring and soap.fault->detail for SOAP 1.1, and
soap.fault->SOAP ENV Reason and soap.fault->SOAP ENV Detail for SOAP 1.2, where soap is a vari-
able that contains the current runtime context, see Section 12. A receiver error indicates that the
service can’t handle the request, but can possibly recover from the error. To return an unrecov-
erable SOAP 1.1/1.2 error, use soap sender fault(struct soap *soap, const char *faultstring, const char

*detail).

To return a HTTP error code a service method can simply return the HTTP error code number.
For example, return 404; returns a ”404 Not Found” HTTP error back to the client. The soap.error

is set to the HTTP error code at the client side. The HTTP 1.1 error codes are:

116

Error
201 Created
202 Accepted
203 Non-Authoritative Information
204 No Content
205 Reset Content
206 Partial Content
300 Multiple Choices
301 Moved Permanently
302 Found
303 See Other
304 Not Modified
305 Use Proxy
307 Temporary Redirect
400 Bad Request
401 Unauthorized
402 Payment Required
403 Forbidden
404 Not Found
405 Method Not Allowed
406 Not Acceptable
407 Proxy Authentication Required
408 Request Time-out
409 Conflict
410 Gone
411 Length Required
412 Precondition Failed
413 Request Entity Too Large
414 Request-URI Too Large
415 Unsupported Media Type
416 Requested range not satisfiable
417 Expectation Failed
500 Internal Server Error
501 Not Implemented
502 Bad Gateway
503 Service Unavailable
504 Gateway Time-out
505 HTTP Version not supported

The error codes are given for informational purposes only. The HTTP protocol requires the proper
actions after an error is issued. gSOAP’s HTTP 1.0/1.1 handling is automatic.

10.3 C/C++ Identifier Name to XML Tag Name Mapping

One of the “secrets” behind the power and flexibility of gSOAP’s encoding and decoding of service
operation names, class names, type identifiers, and struct or class fields is the ability to specify
namespace prefixes with these names that are used to denote their encoding style. More specifically,
a C/C++ identifier name of the form

[namespace prefix]element name

117

where the prefix and the element name are separated by double underscores will be encoded in
XML as

<[namespace-prefix:]element-name ...>

The underscore pair () separates the namespace prefix from the element name. Each namespace
prefix has a namespace URI specified by a namespace mapping table 10.4, see also Section 7.1.2.
The namespace URI is a unique identification that can be associated with the service operations
and data types. The namespace URI disambiguates potentially identical service operation names
and data type names used by disparate organizations.

XML element names are NCNames (restricted strings) that MAY contain hyphens, dots, and
underscores. The special characters in the XML element names of service operations, structs,
classes, typedefs, and fields can be controlled using the following conventions: A single underscore
in a namespace prefix or identifier name is replaced by a hyphen (-) in the XML element name. For
example, the identifier name SOAP ENC ur type is represented in XML as SOAP-ENC:ur-type. The
sequence DOT is replaced by a dot (.), and the sequence USCORE is replaced by an underscore ()
in the corresponding XML element name. For example:

class n s biz DOTcom
{

char *n s biz USCOREname;
};

is encoded in XML as:

<n-s:biz.com xsi:type="n-s:biz.com">
<n-s:biz name xsi:type="string">Bizybiz</n-s:biz name>

</n-s:biz.com>

Trailing underscores of an identifier name are not translated into the XML representation. This is
useful when an identifier name clashes with a C++ keyword. For example, return is often used
as an accessor name in a SOAP response element. The return element can be specified as return

in the C++ source code. Note that XML should be treated as case sensitive, so the use of e.g.
Return may not always work to avoid a name clash with the return keyword. The use of trailing
underscores also allows for defining structs and classes with essentially the same XML Schema type
name, but that have to be distinguished as seperate C/C++ types.

For decoding, the underscores in identifier names act as wildcards. An XML element is parsed and
matches the name of an identifier if the name is identical to the element name (case insensitive)
and the underscores in the identifier name are allowed to match any character in the element
name. For example, the identifier name I want soap fun the bea DOTcom matches the element
name I-want:SOAP4fun@the-beach.com.

By default, soapcpp2 generates data bindings in which all XML elements are and attributes are
unqualified:

//gsoap x schema namespace: urn:x
struct x record

118

{
@char * type;
char * name;
};

where the name element and the type attribute are unqualified in the XML content (for example to
facilitate SOAP RPC encoding).

The rules for SOAP services that are document style are different:

//gsoap x schema namespace: urn:x
//gsoap x service style: document
struct x record
{

@char * type;
char * name;
};

where x is associated with a service. For document style all elements are qualified and attributes
are unqualified.

To force qualification of elements and attributes, use the “form” directive:

//gsoap x schema namespace: urn:x
//gsoap x schema form: qualified
struct x record
{

@char * type;
char * name;
};

You can also use “elementForm” and “attributeForm” directives to (un)qualify element and at-
tributes of the schema, respectively.

Because the soapcpp2-generated serializers follow the qualified/unqualified forms of the schemas,
there is normally no need to explicitly qualify struct/class members because automatic encoding
rules will be used.

If explicit qualification is needed, this can be done using the prefix convention:

//gsoap x schema namespace: urn:x
//gsoap y schema namespace: urn:y
struct x record
{

@char * xsi type;
char * y name;
};

which ensures that there cannot be any name clashes between members of the same name defined in
different schemas (consider for example name and y name), but this can clutter the representation
when clashes do not occur.

119

An alternative to the prefix convention is the use of “colon notation” in the gSOAP header file.
This deviation from the C/C++ syntax allows you to bind type names and struct and class members
to qualified and unqualified XML tag names explicitly, thus bypassing the default mechanism
that automatically qualifies or unqualifies element and attribute tag names based on the schema
element/attribute form.

The colon notation for type names, struct/class names and members overrides the prefix qualifica-
tion rules explicitly:

//gsoap x schema namespace: urn:x
//gsoap y schema namespace: urn:y
struct x:record
{

@char * xsi:type;
char * y:name;
};

where x and y are namespace prefixes that MUST be declared with a directive. The xsi:type member
is an XML attribute in the xsi namespace. The soapcpp2 tool maps this to the following struct
without the annotations:

// This code is generated from the above by soapcpp2 in soapStub.h:
struct record
{

char *type; /* optional attribute of type xsd:string */
char *name; /* optional element of type xsd:string */
};

The soapcpp2 tool also generates XML schemas with element and attribute references. That is,
y:name is referenced from the y schema by the x:record complexType defined in the x schema.

The colon notation also allows you to override the element/attribute form to unqualified for qualified
schemas:

//gsoap x schema namespace: urn:x
//gsoap x schema form: qualified
struct x:record
{

@char * :type;
char * :name;

};

where the colon notation ensures that both type and name are unqualified in the XML content,
which overrides the default qualified forms of the x schema.

Note that the use of colon notation to bind namespace prefixes to type names (typedef, enum,
struct, and class names) translates to code without the prefixes. This means that name clashes can
occur between types with identical unquaified names:

enum x:color { RED, WHITE, BLUE };
enum y:color { YELLOW, ORANGE }; // illegal enum name: name clash with x:color

120

while prefixing with double underscores never lead to clashes:

enum x color { RED, WHITE, BLUE };
enum y color { YELLOW, ORANGE }; // no name clash

Also note that colon notation has a very different role than the C++ scope operator ::. The scope
operator cannot be used in places where we need colon notation, such as struct/class member fields.

The default mechanism that associates XML tag names with the names of struct and class member
fields can be overriden by “retagging” names with the annotation of ‘tag‘ placed next to the
member field name. This is particularly useful to support legacy code for which the fixed naming
of member fields cannot be easily changed. For example:

//gsoap x schema namespace: urn:x
//gsoap x schema form: qualified
struct x:record
{

@char * t‘type‘;
char * s‘full-name‘;
};

This maps the t member to the x:type XML attribute tag and s member to the x:full-name XML
element tag. Note that both tags are namespace qualified as per schema declaration.

10.4 Namespace Mapping Table

A namespace mapping table MUST be defined by clients and service applications. The mapping
table is used by the serializers and deserializers of the stub and skeleton routines to produce a valid
SOAP payload and to validate an incoming SOAP payload. A typical mapping table is shown
below:

struct Namespace namespaces[] =
{ // {”ns-prefix”, ”ns-name”}
{”SOAP-ENV”, ”http://schemas.xmlsoap.org/soap/envelope/”}, // MUST be first
{”SOAP-ENC”, ”http://schemas.xmlsoap.org/soap/encoding/”}, // MUST be second
{”xsi”, ”http://www.w3.org/2001/XMLSchema-instance”}, // MUST be third
{”xsd”, ”http://www.w3.org/2001/XMLSchema”}, // Required for XML Schema types
{”ns1”, ”urn:my-service-URI”}, // The namespace URI of the service operations
{NULL, NULL} // end of table

};

Each namespace prefix used by a identifier name in the header file specification (see Section 10.3)
MUST have a binding to a namespace URI in the mapping table. The end of the namespace map-
ping table MUST be indicated by the NULL pair. The namespace URI matching is case insensitive.
A namespace prefix is distinguished by the occurrence of a pair of underscores () in an identifier.

An optional namespace pattern MAY be provided with each namespace mapping table entry. The
patterns provide an alternative namespace matching for the validation of decoded SOAP messages.

121

In this pattern, dashes (-) are single-character wildcards and asterisks (*) are multi-character wild-
cards. For example, to decode different versions of XML Schema type with different authoring
dates, four dashes can be used in place of the specific dates in the namespace mapping table
pattern:

struct Namespace namespaces[] =
{ // {”ns-prefix”, ”ns-name”, ”ns-name validation pattern”}
...
{”xsi”, ”http://www.w3.org/2001/XMLSchema-instance”, ”http://www.w3.org/----/XMLSchema-

instance”},
{”xsd”, ”http://www.w3.org/2001/XMLSchema”, ”http://www.w3.org/----/XMLSchema”},

...

Or alternatively, asterisks can be used as wildcards for multiple characters:

struct Namespace namespaces[] =
{ // {”ns-prefix”, ”ns-name”, ”ns-name validation pattern”}
...
{”xsi”, ”http://www.w3.org/2001/XMLSchema-instance”, ”http://www.w3.org/*/XMLSchema-

instance”},
{”xsd”, ”http://www.w3.org/2001/XMLSchema”, ”http://www.w3.org/*/XMLSchema”},

...

A namespace mapping table is automatically generated together with a WSDL file for each names-
pace prefix that is used for a service operation specified in the header file. This namespace mapping
table has entries for all namespace prefixes. The namespace URIs need to be filled in. These appear
as http://tempuri.org in the table. See Section 19.2 on how to specify the namespace URIs in the
header file.

For decoding elements with namespace prefixes, the namespace URI associated with the namespace
prefix (through the xmlns attribute of an XML element) is searched from the beginning to the end
in a namespace mapping table, and for every row the following tests are performed as part of the
validation process:

1. the string in the second column matches the namespace URI (case insensitive)

2. the string in the optional third column matches the namespace URI (case insensitive), where
- is a one-character wildcard and * is a multi-character wildcard

When a match is found, the namespace prefix in the first column of the table is considered semanti-
cally identical to the namespace prefix used by the XML element to be decoded, though the prefix
names may differ. A service will respond with the namespace that it received from a client in case
it matches a pattern in the third column.

For example, let’s say we have the following structs:

struct a elt { ... };
struct b elt { ... };
struct k elt { ... };

122

and a namespace mapping table in the program:

struct Namespace namespaces[] =
{ // {”ns-prefix”, ”ns-name”, ”ns-name validation pattern”}
...
{”a”, ”some uri”},
{”b”, ”other uri”},
{”c”, ”his uri”, ”* uri”},

...

Then, the following XML elements will match the structs:

<n:elt xmlns:n="some URI"> matches the struct name a elt
...
<m:elt xmlns:m="other URI"> matches the struct name b elt
...
<k:elt xmlns:k="my URI"> matches the struct name c elt
...

The response of a service to a client request that uses the namespaces listed above, will include my

URI for the name space of element k.

It is possible to use a number of different namespace tables and select the one that is appropriate.
For example, an application might contact many different Web services all using different namespace
URIs. If all the URIs are stored in one table, each service operation invocation will dump the whole
namespace table in the SOAP payload. There is no technical problem with that, but it can be ugly
when the table is large. To use different namespace tables, declare a pointer to a table and set the
pointer to a particular table before service operation invocation. For example:

struct Namespace namespacesTable1[] = { ... };
struct Namespace namespacesTable2[] = { ... };
struct Namespace namespacesTable3[] = { ... };
struct Namespace *namespaces;
...
struct soap soap;
...
soap init(&soap);
soap set namespaces(&soap, namespaceTable1);
soap call remote method(&soap, URL, Action, ...);
...

11 gSOAP Serialization and Deserialization Rules

This section describes the serialization and deserialization of C and C++ data types for SOAP 1.1
and 1.2 compliant encoding and decoding.

123

11.1 SOAP RPC Encoding Versus Document/Literal and xsi:type Info

The wsdl2h tool automatically generates a header file specialized for SOAP RPC encoding or
document/literal style. The serialization and deserialization rules for C/C++ objects is almost
identical for these styles, except for the following important issues.

With SOAP RPC encoding style, care must be taken to ensure typed messages are produced
for interoperability and compatibility reasons. To ensure that the gSOAP engine automatically
generates typed (xsi:type attributed) messages, use soapcpp2 option -t, see also Section 9.1. While
gSOAP can handle untyped messages, some toolkits fail to find deserializers when the xsi:type

information is absent.

When starting the development of a gSOAP application from a header file, the soapcpp2 compiler
will generate WSDL and schema files for SOAP 1.1 document/literal style by default (use the
//gsoap directives to control this, see Section 19.2). Use soapcpp2 options -2, -e, and -t to generate
code for SOAP 1.2, RPC encoding, and typed messages.

With SOAP RPC encoding, generic complexTypes with maxOccurs="unbounded" are not allowed and
SOAP encoded arrays must be used. Also XML attributes and unions (XML schema choice) are
not allowed with SOAP RPC encoding.

Also with SOAP RPC encoding, multi-reference accessors are common to encode co-referenced
objects and object digraphs. Multi-reference encoding is not supported in document/literal style,
which means that cyclic object digraphs cannot be serialized (the engine will crash). Also DAGs
are represented as XML trees in document/literal style messaging.

11.2 Primitive Type Encoding

The default encoding rules for the primitive C and C++ data types are given in the table below:

Type XSD Type
bool boolean
char* (C string) string
char byte
long double decimal (with #import ”custom/long double.h”)
double double
float float
int int
long long
LONG64 long
long long long
short short
time t dateTime
struct tm dateTime (with #import ”custom/struct tm.h”)
unsigned char unsignedByte
unsigned int unsignedInt
unsigned long unsignedLong
ULONG64 unsignedLong
unsigned long long unsignedLong
unsigned short unsignedShort
wchar t* string

124

Objects of type void and void* cannot be encoded. Enumerations and bit masks are supported as
well, see 11.4.

11.3 How to Represent Primitive C/C++ Types as XSD Types

By default, encoding of the primitive types will take place as per SOAP encoding style. The
encoding can be changed to any XML Schema type (XSD type) with an optional namespace prefix
by using a typedef in the header file input to the gSOAP soapcpp2 tool. The declaration enables the
implementation of built-in XML Schema types (also known as XSD types) such as positiveInteger,
xsd:anyURI, and xsd:date for which no built-in data structures in C and C++ exist but which can
be represented using standard data structures such as strings, integers, and floats.

The typedef declaration is frequently used for convenience in C. A typedef declares a type name
for a (complex) type expression. The type name can then be used in other declarations in place of
the more complex type expression, which often improves the readability of the program code.

The gSOAP soapcpp2 compiler interprets typedef declarations the same way as a regular C compiler
interprets them, i.e. as types in declarations. In addition however, the gSOAP soapcpp2 compiler
will also use the type name in the encoding of the data in SOAP. The typedef name will appear as
the XML element name of an independent element and as the value of the xsi:type attribute in
the SOAP payload.

Many built-in primitive and derived XSD types such as xsd:anyURI, positiveInteger, and decimal

can be stored by standard primitive data structures in C++, such as strings, integers, floats, and
doubles. To serialize strings, integers, floats, and doubles as built-in primitive and derived XSD
types, a typedef declaration can be used to declare an XSD type.

For example, the declaration

typedef unsigned int xsd positiveInteger;

creates a named type positiveInteger which is represented by unsigned int in C++. For example, the
encoding of a positiveInteger value 3 is

<positiveInteger xsi:type="xsd:positiveInteger">3</positiveInteger>

The built-in primitive and derived numerical XML Schema types are listed below together with
their recommended typedef declarations. Note that the SOAP encoding schemas for primitive types
are derived from the built-in XML Schema types, so SOAP ENC can be used as a namespace prefix
instead of xsd .

xsd:anyURI Represents a Uniform Resource Identifier Reference (URI). Each URI scheme imposes
specialized syntax rules for URIs in that scheme, including restrictions on the syntax of
allowed fragment identifiers. It is recommended to use strings to store xsd:anyURI XML
Schema types. The recommended type declaration is:

typedef char *xsd anyURI;

xsd:base64Binary Represents Base64-encoded arbitrary binary data. For using the xsd:base64Binary
XSD Schema type, the use of the base64Binary representation of a dynamic array is strongly

125

recommended, see Section 11.12. However, the type can also be declared as a string and the
encoding will be string-based:

typedef char *xsd base64Binary;

With this approach, it is the responsibility of the application to make sure the string content
is according to the Base64 Content-Transfer-Encoding defined in Section 6.8 of RFC 2045.

xsd:boolean For declaring an xsd:boolean XSD Schema type, the use of a bool is strongly recom-
mended. If a pure C compiler is used that does not support the bool type, see Section 11.4.5.
The corresponding type declaration is:

typedef bool xsd boolean;

Type xsd boolean declares a Boolean (0 or 1), which is encoded as

<xsd:boolean xsi:type="xsd:boolean">...</xsd:boolean>

xsd:byte Represents a byte (-128...127). The corresponding type declaration is:

typedef char xsd byte;

Type xsd byte declares a byte which is encoded as

<xsd:byte xsi:type="xsd:byte">...</xsd:byte>

xsd:dateTime Represents a date and time. The lexical representation is according to the ISO
8601 extended format CCYY-MM-DDThh:mm:ss where ”CC” represents the century, ”YY”
the year, ”MM” the month and ”DD” the day, preceded by an optional leading ”-” sign to
indicate a negative number. If the sign is omitted, ”+” is assumed. The letter ”T” is the
date/time separator and ”hh”, ”mm”, ”ss” represent hour, minute and second respectively.
It is recommended to use the time t type to store xsd:dateTime XSD Schema types and the
type declaration is:

typedef time t xsd dateTime;

However, note that calendar times before the year 1902 or after the year 2037 cannot be
represented. Upon receiving a date outside this range, the time t value will be set to -1.

Strings (char*) can be used to store xsd:dateTime XSD Schema types. The type declaration
is:

typedef char *xsd dateTime;

In this case, it is up to the application to read and set the dateTime representation.

xsd:date Represents a date. The lexical representation for date is the reduced (right truncated)
lexical representation for dateTime: CCYY-MM-DD. It is recommended to use strings (char*)
to store xsd:date XSD Schema types. The type declaration is:

typedef char *xsd date;

xsd:decimal Represents arbitrary precision decimal numbers. It is recommended to use the double
type to store xsd:decimal XSD Schema types and the type declaration is:

126

typedef double xsd decimal;

Type xsd decimal declares a double floating point number which is encoded as

<xsd:double xsi:type="xsd:decimal">...</xsd:double>

xsd:double Corresponds to the IEEE double-precision 64-bit floating point type. The type decla-
ration is:

typedef double xsd double;

Type xsd double declares a double floating point number which is encoded as

<xsd:double xsi:type="xsd:double">...</xsd:double>

xsd:duration Represents a duration of time. The lexical representation for duration is the ISO
8601 extended format PnYn MnDTnH nMnS, where nY represents the number of years, nM
the number of months, nD the number of days, T is the date/time separator, nH the number
of hours, nM the number of minutes and nS the number of seconds. The number of seconds
can include decimal digits to arbitrary precision. It is recommended to use strings (char*) to
store xsd:duration XSD Schema types. The type declaration is:

typedef char *xsd duration;

xsd:float Corresponds to the IEEE single-precision 32-bit floating point type. The type declara-
tion is:

typedef float xsd float;

Type xsd float declares a floating point number which is encoded as

<xsd:float xsi:type="xsd:float">...</xsd:float>

xsd:hexBinary Represents arbitrary hex-encoded binary data. It has a lexical representation where
each binary octet is encoded as a character tuple, consisting of two hexadecimal digits ([0-
9a-fA-F]) representing the octet code. For example, ”0FB7” is a hex encoding for the 16-bit
integer 4023 (whose binary representation is 111110110111. For using the xsd:hexBinary

XSD Schema type, the use of the hexBinary representation of a dynamic array is strongly
recommended, see Section 11.13. However, the type can also be declared as a string and the
encoding will be string-based:

typedef char *xsd hexBinary;

With this approach, it is solely the responsibility of the application to make sure the string
content consists of a sequence of octets.

xsd:int Corresponds to a 32-bit integer in the range -2147483648 to 2147483647. If the C++
compiler supports 32-bit int types, the type declaration can use the int type:

typedef int xsd int;

Otherwise, the C++ compiler supports 16-bit int types and the type declaration should use
the long type:

127

typedef long xsd int;

Type xsd int declares a 32-bit integer which is encoded as

<xsd:int xsi:type="xsd:int">...</xsd:int>

xsd:integer Corresponds to an unbounded integer. Since C++ does not support unbounded inte-
gers as a standard feature, the recommended type declaration is:

typedef long long xsd integer;

Type xsd integer declares a 64-bit integer which is encoded as an unbounded xsd:integer:

<xsd:integer xsi:type="xsd:integer">...</xsd:integer>

Another possibility is to use strings to represent unbounded integers and do the translation
in code.

xsd:long Corresponds to a 64-bit integer in the range -9223372036854775808 to 9223372036854775807.
The type declaration is:

typedef long long xsd long;

Or in Visual C++:

typedef LONG64 xsd long;

Type xsd long declares a 64-bit integer which is encoded as

<xsd:long xsi:type="xsd:long">...</xsd:long>

xsd:negativeInteger Corresponds to a negative unbounded integer (< 0). Since C++ does not
support unbounded integers as a standard feature, the recommended type declaration is:

typedef long long xsd negativeInteger;

Type xsd negativeInteger declares a 64-bit integer which is encoded as a xsd:negativeInteger:

<xsd:negativeInteger xsi:type="xsd:negativeInteger">...</xsd:negativeInteger>

Another possibility is to use strings to represent unbounded integers and do the translation
in code.

xsd:nonNegativeInteger Corresponds to a non-negative unbounded integer (> 0). Since C++ does
not support unbounded integers as a standard feature, the recommended type declaration is:

typedef unsigned long long xsd nonNegativeInteger;

Type xsd nonNegativeInteger declares a 64-bit unsigned integer which is encoded as a non-
negative unbounded xsd:nonNegativeInteger:

<xsd:nonNegativeInteger xsi:type="xsd:nonNegativeInteger">...</xsd:nonNegativeInteger>

Another possibility is to use strings to represent unbounded integers and do the translation
in code.

128

xsd:nonPositiveInteger Corresponds to a non-positive unbounded integer (≤ 0). Since C++ does
not support unbounded integers as a standard feature, the recommended type declaration is:

typedef long long xsd nonPositiveInteger;

Type xsd nonPositiveInteger declares a 64-bit integer which is encoded as a xsd:nonPositiveInteger:

<xsd:nonPositiveInteger xsi:type="xsd:nonPositiveInteger">...</xsd:nonPositiveInteger>

Another possibility is to use strings to represent unbounded integers and do the translation
in code.

xsd:normalizedString Represents normalized character strings. Normalized character strings do
not contain the carriage return (#xD), line feed (#xA) nor tab (#x9) characters. It is
recommended to use strings to store xsd:normalizeString XSD Schema types. The type
declaration is:

typedef char *xsd normalizedString;

Type xsd normalizedString declares a string type which is encoded as

<xsd:normalizedString xsi:type="xsd:normalizedString">...</xsd:normalizedString>

It is solely the responsibility of the application to make sure the strings do not contain carriage
return (#xD), line feed (#xA) and tab (#x9) characters.

xsd:positiveInteger Corresponds to a positive unbounded integer (≥ 0). Since C++ does not
support unbounded integers as a standard feature, the recommended type declaration is:

typedef unsigned long long xsd positiveInteger;

Type xsd positiveInteger declares a 64-bit unsigned integer which is encoded as a xsd:positiveInteger:

<xsd:positiveInteger xsi:type="xsd:positiveInteger">...</xsd:positiveInteger>

Another possibility is to use strings to represent unbounded integers and do the translation
in code.

xsd:short Corresponds to a 16-bit integer in the range -32768 to 32767. The type declaration is:

typedef short xsd short;

Type xsd short declares a short 16-bit integer which is encoded as

<xsd:short xsi:type="xsd:short">...</xsd:short>

xsd:string Represents character strings. The type declaration is:

typedef char *xsd string;

Type xsd string declares a string type which is encoded as

<xsd:string xsi:type="xsd:string">...</xsd:string>

The type declaration for wide character strings is:

129

typedef wchar t *xsd string;

Both type of strings can be used at the same time, but requires one typedef name to be
changed by appending an underscore which is invisible in XML. For example:

typedef wchar t *xsd string ;

xsd:time Represents a time. The lexical representation for time is the left truncated lexical rep-
resentation for dateTime: hh:mm:ss.sss with optional following time zone indicator. It is
recommended to use strings (char*) to store xsd:time XSD Schema types. The type declara-
tion is:

typedef char *xsd time;

xsd:token Represents tokenized strings. Tokens are strings that do not contain the line feed (#xA)
nor tab (#x9) characters, that have no leading or trailing spaces (#x20) and that have no
internal sequences of two or more spaces. It is recommended to use strings to store xsd:token

XSD Schema types. The type declaration is:

typedef char *xsd token;

Type xsd token declares a string type which is encoded as

<xsd:token xsi:type="xsd:token">...</xsd:token>

It is solely the responsibility of the application to make sure the strings do not contain the
line feed (#xA) nor tab (#x9) characters, that have no leading or trailing spaces (#x20) and
that have no internal sequences of two or more spaces.

xsd:unsignedByte Corresponds to an 8-bit unsigned integer in the range 0 to 255. The type decla-
ration is:

typedef unsigned char xsd unsignedByte;

Type xsd unsignedByte declares a unsigned 8-bit integer which is encoded as

<xsd:unsignedByte xsi:type="xsd:unsignedByte">...</xsd:unsignedByte>

xsd:unsignedInt Corresponds to a 32-bit unsigned integer in the range 0 to 4294967295. If the
C++ compiler supports 32-bit int types, the type declaration can use the int type:

typedef unsigned int xsd unsignedInt;

Otherwise, the C++ compiler supports 16-bit int types and the type declaration should use
the long type:

typedef unsigned long xsd unsignedInt;

Type xsd unsignedInt declares an unsigned 32-bit integer which is encoded as

<xsd:unsignedInt xsi:type="xsd:unsignedInt">...</xsd:unsignedInt>

xsd:unsignedLong Corresponds to a 64-bit unsigned integer in the range 0 to 18446744073709551615.
The type declaration is:

130

typedef unsigned long long xsd unsignedLong;

Or in Visual C++:

typedef ULONG64 xsd unsignedLong;

Type xsd unsignedLong declares an unsigned 64-bit integer which is encoded as

<xsd:unsignedLong xsi:type="xsd:unsignedLong">...</xsd:unsignedLong>

xsd:unsignedShort Corresponds to a 16-bit unsigned integer in the range 0 to 65535. The type
declaration is:

typedef unsigned short xsd unsignedShort;

Type xsd unsginedShort declares an unsigned short 16-bit integer which is encoded as

<xsd:unsignedShort xsi:type="xsd:unsignedShort">...</xsd:unsignedShort>

Other XSD Schema types such as gYearMonth, gYear, gMonthDay, gDay, xsd:gMonth, QName, NOTATION,
etc., can be encoded similarly using a typedef declaration.

11.3.1 How to Use Multiple C/C++ Types for a Single Primitive XSD Type

Trailing underscores (see Section 10.3) can be used in the type name in a typedef to enable the
declaration of multiple storage formats for a single XML Schema type. For example, one part
of a C/C++ application’s data structure may use plain strings while another part may use wide
character strings. To enable this simultaneous use, declare:

typedef char *xsd string;
typedef wchar t *xsd string ;

Now, the xsd string and xsd string types will both be encoded and decoded as XML string types
and the use of trailing underscores allows multiple declarations for a single XML Schema type.

11.3.2 How to use C++ Wrapper Classes to Specify Polymorphic Primitive Types

SOAP 1.1 supports polymorphic types, because XSD Schema types form a hierarchy. The root of
the hierarchy is called xsd:anyType (xsd:ur-type in the older 1999 schema). So, for example, an
array of xsd:anyType in SOAP may actually contain any mix of element types that are the derived
types of the root type. The use of polymorphic types is indicated by the WSDL and schema
descriptions of a Web service and can therefore be predicted/expected for each particular case.

On the one hand, the typedef construct provides a convenient way to associate C/C++ types with
XML Schema types and makes it easy to incorporate these types in a (legacy) C/C++ application.
However, on the other hand the typedef declarations cannot be used to support polymorphic XML
Schema types. Most SOAP clients and services do not use polymorphic types. In case they do,
the primitive polymorphic types can be declared as a hierarchy of C++ classes that can be used
simultaneously with the typedef declarations.

The general form of a primitive type declaration that is derived from a super type is:

131

class xsd type name: [public xsd super type name]
{ public: Type item;

[public:] [private] [protected:]
method1;
method2;
...
};

where Type is a primitive C type. The item field MUST be the first field in this wrapper class.

For example, the XML Schema type hierarchy can be copied to C++ with the following declarations:

class xsd anyType { };
class xsd anySimpleType: public xsd anyType { };
typedef char *xsd anyURI;
class xsd anyURI : public xsd anySimpleType { public: xsd anyURI item; };
typedef bool xsd boolean;
class xsd boolean : public xsd anySimpleType { public: xsd boolean item; };
typedef char *xsd date;
class xsd date : public xsd anySimpleType { public: xsd date item; };
typedef time t xsd dateTime;
class xsd dateTime : public xsd anySimpleType { public: xsd dateTime item; };
typedef double xsd double;
class xsd double : public xsd anySimpleType { public: xsd double item; };
typedef char *xsd duration;
class xsd duration : public xsd anySimpleType { public: xsd duration item; };
typedef float xsd float;
class xsd float : public xsd anySimpleType { public: xsd float item; };
typedef char *xsd time;
class xsd time : public xsd anySimpleType { public: xsd time item; };
typedef char *xsd decimal;
class xsd decimal : public xsd anySimpleType { public: xsd decimal item; };
typedef char *xsd integer;
class xsd integer : public xsd decimal { public: xsd integer item; };
typedef LONG64 xsd long;
class xsd long : public xsd integer { public: xsd long item; };
typedef long xsd int;
class xsd int : public xsd long { public: xsd int item; };
typedef short xsd short;
class xsd short : public xsd int { public: xsd short item; };
typedef char xsd byte;
class xsd byte : public xsd short { public: xsd byte item; };
typedef char *xsd nonPositiveInteger;
class xsd nonPositiveInteger : public xsd integer { public: xsd nonPositiveInteger item; };
typedef char *xsd negativeInteger;
class xsd negativeInteger : public xsd nonPositiveInteger { public: xsd negativeInteger item;
};
typedef char *xsd nonNegativeInteger;
class xsd nonNegativeInteger : public xsd integer { public: xsd nonNegativeInteger item; };
typedef char *xsd positiveInteger;
class xsd positiveInteger : public xsd nonNegativeInteger { public: xsd positiveInteger item;
};

132

typedef ULONG64 xsd unsignedLong;
class xsd unsignedLong : public xsd nonNegativeInteger { public: xsd unsignedLong item;
};
typedef unsigned long xsd unsignedInt;
class xsd unsignedInt : public xsd unsginedLong { public: xsd unsignedInt item; };
typedef unsigned short xsd unsignedShort;
class xsd unsignedShort : public xsd unsignedInt { public: xsd unsignedShort item; };
typedef unsigned char xsd unsignedByte;
class xsd unsignedByte : public xsd unsignedShort { public: xsd unsignedByte item; };
typedef char *xsd string;
class xsd string : public xsd anySimpleType { public: xsd string item; };
typedef char *xsd normalizedString;
class xsd normalizedString : public xsd string { public: xsd normalizedString item; };
typedef char *xsd token;
class xsd token : public xsd normalizedString { public: xsd token item; };

Note the use of the trailing underscores for the class names to distinguish the typedef type names
from the class names. Only the most frequently used built-in schema types are shown. It is also
allowed to include the xsd:base64Binary and xsd:hexBinary types in the hierarchy:

class xsd base64Binary: public xsd anySimpleType { public: unsigned char * ptr; int size;
};
class xsd hexBinary: public xsd anySimpleType { public: unsigned char * ptr; int size; };

See Sections 11.12 and 11.13.

Methods are allowed to be added to the classes above, such as constructors and getter/setter
methods, see Section 11.6.4.

Wrapper structs are supported as well, similar to wrapper classes. But they cannot be used to
implement polymorphism. Rather, the wrapper structs facilitate the use of XML attributes with a
primitive typed object, see 11.6.7.

11.3.3 XSD Schema Type Decoding Rules

The decoding rules for the primitive C and C++ data types is given in the table below:

133

Type Allows Decoding of Precision Lost?
bool [xsd:]boolean no
char* (C string) any type, see 11.3.5 no
wchar t * (wide string) any type, see 11.3.5 no

double [xsd:]double no
[xsd:]float no
[xsd:]long no
[xsd:]int no
[xsd:]short no
[xsd:]byte no
[xsd:]unsignedLong no
[xsd:]unsignedInt no
[xsd:]unsignedShort no
[xsd:]unsignedByte no
[xsd:]decimal possibly
[xsd:]integer possibly
[xsd:]positiveInteger possibly
[xsd:]negativeInteger possibly
[xsd:]nonPositiveInteger possibly
[xsd:]nonNegativeInteger possibly

float [xsd:]float no
[xsd:]long no
[xsd:]int no
[xsd:]short no
[xsd:]byte no
[xsd:]unsignedLong no
[xsd:]unsignedInt no
[xsd:]unsignedShort no
[xsd:]unsignedByte no
[xsd:]decimal possibly
[xsd:]integer possibly
[xsd:]positiveInteger possibly
[xsd:]negativeInteger possibly
[xsd:]nonPositiveInteger possibly
[xsd:]nonNegativeInteger possibly

long long [xsd:]long no
[xsd:]int no
[xsd:]short no
[xsd:]byte no
[xsd:]unsignedLong possibly
[xsd:]unsignedInt no
[xsd:]unsignedShort no
[xsd:]unsignedByte no
[xsd:]integer possibly
[xsd:]positiveInteger possibly
[xsd:]negativeInteger possibly
[xsd:]nonPositiveInteger possibly
[xsd:]nonNegativeInteger possibly

134

Type Allows Decoding of Precision Lost?
long [xsd:]long possibly, if long is 32 bit

[xsd:]int no
[xsd:]short no
[xsd:]byte no
[xsd:]unsignedLong possibly
[xsd:]unsignedInt no
[xsd:]unsignedShort no
[xsd:]unsignedByte no

int [xsd:]int no
[xsd:]short no
[xsd:]byte no
[xsd:]unsignedInt possibly
[xsd:]unsignedShort no
[xsd:]unsignedByte no

short [xsd:]short no
[xsd:]byte no
[xsd:]unsignedShort no
[xsd:]unsignedByte no

char [xsd:]byte no
[xsd:]unsignedByte possibly

unsigned long long [xsd:]unsignedLong no
[xsd:]unsignedInt no
[xsd:]unsignedShort no
[xsd:]unsignedByte no
[xsd:]positiveInteger possibly
[xsd:]nonNegativeInteger possibly

unsigned long [xsd:]unsignedLong possibly, if long is 32 bit
[xsd:]unsignedInt no
[xsd:]unsignedShort no
[xsd:]unsignedByte no

unsigned int [xsd:]unsignedInt no
[xsd:]unsignedShort no
[xsd:]unsignedByte no

unsigned short [xsd:]unsignedShort no
[xsd:]unsignedByte no

unsigned char [xsd:]unsignedByte no

time t [xsd:]dateTime no(?)

135

Due to limitations in representation of certain primitive C++ types, a possible loss of accuracy may
occur with the decoding of certain XSD Schema types as is indicated in the table. The table does
not indicate the possible loss of precision of floating point values due to the textual representation
of floating point values in SOAP.

All explicitly declared XSD Schema encoded primitive types adhere to the same decoding rules.
For example, the following declaration:

typedef unsigned long long xsd nonNegativeInteger;

enables the encoding and decoding of xsd:nonNegativeInteger XSD Schema types (although de-
coding takes place with a possible loss of precision). The declaration also allows decoding of
xsd:positiveInteger XSD Schema types, because of the storage as a unsigned long long data type.

11.3.4 Multi-Reference Strings

If more than one char pointer points to the same string, the string is encoded as a multi-reference
value. Consider for example

char *s = ”hello”, *t = s;

The s and t variables are assigned the same string, and when serialized, t refers to the content of s:

<string id="123" xsi:type="string">hello</string>
...
<string href="#123"/>

The example assumed that s and t are encoded as independent elements.

Note: the use of typedef to declare a string type such as xsd string will not affect the multi-reference
string encoding. However, strings declared with different typedefs will never be considered multi-
reference even when they point to the same string. For example

typedef char *xsd string;
typedef char *xsd anyURI;
xsd anyURI *s = ”http://www.myservice.com”;
xsd string *t = s;

The variables s and t point to the same string, but since they are considered different types their
content will not be shared in the SOAP payload through a multi-referenced string.

11.3.5 “Smart String” Mixed-Content Decoding

The implementation of string decoding in gSOAP allows for mixed content decoding. If the SOAP
payload contains a complex data type in place of a string, the complex data type is decoded in the
string as plain XML text.

For example, suppose the getInfo service operation returns some detailed information. The service
operation is declared as:

136

// Contents of header file ”getInfo.h”:
getInfo(char *detail);

The proxy of the service is used by a client to request a piece of information and the service responds
with:

HTTP/1.1 200 OK
Content-Type: text/xml
Content-Length: nnn

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"

<SOAP-ENV:Body>
<getInfoResponse>
<detail>
<picture>Mona Lisa by <i>Leonardo da Vinci</i></picture>
</detail>
</getInfoResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

As a result of the mixed content decoding, the detail string contains “<picture>Mona Lisa by

<i>Leonardo da Vinci</i></picture>”.

11.3.6 C++ Strings

gSOAP supports C++ strings std::string and std::wstring wide character strings. For example:

typedef std::string xsd string;
class ns myClass
{ public:

xsd string s; // serialized with xsi:type=”xsd:string”
std::string t; // serialized without xsi:type

...
};

Caution: Please avoid mixing std::string and C strings (char*) in the header file when using SOAP
1.1 encoding. The problem is that multi-referenced strings in SOAP encoded messages cannot be
assigned simultaneously to a std::string and a char* string.

11.3.7 Changing the Encoding Precision of float and double Types

The double encoding format is by default set to “%.18G” (see a manual on printf text formatting in
C), i.e. at most 18 digits of precision to limit a loss in accuracy. The float encoding format is by
default “%.9G”, i.e. at most 9 digits of precision.

The encoding format of a double type can be set by assigning a format string to soap.double format,
where soap is a variable that contains the current runtime context. For example:

137

struct soap soap;
soap init(&soap); // sets double format = ”%.18G”
soap.double format = ”%e”; // redefine

which causes all doubles to be encoded in scientific notation. Likewise, the encoding format of a
float type can be set by assigning a format string to the static soap float format string variable. For
example:

struct soap soap;
soap init(&soap); // sets float format = ”%.9G”
soap.float format = ”%.4f”; // redefine

which causes all floats to be encoded with four digits precision.

Caution: The format strings are not automatically reset before or after SOAP communications.
An error in the format string may result in the incorrect encoding of floating point values.

11.3.8 INF, -INF, and NaN Values of float and double Types

The gSOAP runtime stdsoap2.cpp and header file stdsoap2.h support the marshalling of IEEE INF,
-INF, and NaN representations. Under certain circumstances this may break if the hardware and/or
C/C++ compiler does not support these representations. To remove the representations, remove
the inclusion of the <math.h> header file from the stdsoap2.h file. You can control the representations
as well, which are defined by the macros:

#define FLT NAN
#define FLT PINFTY
#define FLT NINFTY
#define DBL NAN
#define DBL PINFTY
#define DBL NINFTY

11.4 Enumeration Serialization

Enumerations are generally useful for the declaration of named integer-valued constants, also called
enumeration constants.

11.4.1 Serialization of Symbolic Enumeration Constants

The gSOAP soapcpp2 tool encodes the constants of enumeration-typed variables in symbolic form
using the names of the constants when possible to comply to SOAP’s enumeration encoding style.
Consider for example the following enumeration of weekdays:

enum weekday {Mon, Tue, Wed, Thu, Fri, Sat, Sun};

The enumeration-constant Mon, for example, is encoded as

138

<weekday xsi:type="weekday">Mon</weekday>

The value of the xsi:type attribute is the enumeration-type identifier’s name. If the element is
independent as in the example above, the element name is the enumeration-type identifier’s name.

The encoding of complex types such as enumerations requires a reference to an XML Schema
through the use of a namespace prefix. The namespace prefix can be specified as part of the
enumeration-type identifier’s name, with the usual namespace prefix conventions for identifiers.
This can be used to explicitly specify the encoding style. For example:

enum ns1 weekday {Mon, Tue, Wed, Thu, Fri, Sat, Sun};

The enumeration-constant Sat, for example, is encoded as:

<ns1:weekday xsi:type="ns1:weekday">Sat</ns1:weekday>

The corresponding XML Schema for this enumeration data type would be:

<xsd:element name="weekday" type="tns:weekday"/>
<xsd:simpleType name="weekday">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="Mon"/>
<xsd:enumeration value="Tue"/>
<xsd:enumeration value="Wed"/>
<xsd:enumeration value="Thu"/>
<xsd:enumeration value="Fri"/>
<xsd:enumeration value="Sat"/>
<xsd:enumeration value="Sun"/>

</xsd:restriction>
</xsd:simpleType>

11.4.2 Encoding of Enumeration Constants

If the value of an enumeration-typed variable has no corresponding named constant, the value is
encoded as a signed integer literal. For example, the following declaration of a workday enumeration
type lacks named constants for Saturday and Sunday:

enum ns1 workday {Mon, Tue, Wed, Thu, Fri};

If the constant 5 (Saturday) or 6 (Sunday) is assigned to a variable of the workday enumeration type,
the variable will be encoded with the integer literals 5 and 6, respectively. For example:

<ns1:workday xsi:type="ns1:workday">5</ns1:workday>

Since this is legal in C++ and SOAP allows enumeration constants to be integer literals, this
method ensures that non-symbolic enumeration constants are correctly communicated to another
party if the other party accepts literal enumeration constants (as with the gSOAP soapcpp2 tool).

Both symbolic and literal enumeration constants can be decoded.

To enforce the literal enumeration constant encoding and to get the literal constants in the WSDL
file, use the following trick:

139

enum ns1 nums { 1 = 1, 2 = 2, 3 = 3 };

The difference with an enumeration type without a list of values and the enumeration type above
is that the enumeration constants will appear in the WSDL service description.

11.4.3 Initialized Enumeration Constants

The gSOAP soapcpp2 compiler supports the initialization of enumeration constants, as in:

enum ns1 relation {LESS = -1, EQUAL = 0, GREATER = 1};

The symbolic names LESS, EQUAL, and GREATER will appear in the SOAP payload for the encoding
of the ns1 relation enumeration values -1, 0, and 1, respectively.

11.4.4 How to “Reuse” Symbolic Enumeration Constants

A well-known deficiency of C and C++ enumeration types is the lack of support for the reuse
of symbolic names by multiple enumerations. That is, the names of all the symbolic constants
defined by an enumeration cannot be reused by another enumeration. To force encoding of the
same symbolic name by different enumerations, the identifier of the symbolic name can end in an
underscore () or any number of underscores to distinguish it from other symbolic names in C++.
This guarantees that the SOAP encoding will use the same name, while the symbolic names can
be distinguished in C++. Effectively, the underscores are removed from a symbolic name prior to
encoding.

Consider for example:

enum ns1 workday {Mon, Tue, Wed, Thu, Fri};
enum ns1 weekday {Mon , Tue , Wed , Thu , Fri , Sat , Sun };

which will result in the encoding of the constants of enum ns1 weekday without the underscore, for
example as Mon.

As an alternative to the trailing underscores that can get quite long for commonly used symbolic
enum names, you can use the following convention with double underscores to add the enum name
to the enum constants:

enum prefixedname { prefixedname enumconst1, prefixedname enumconst2, . . . };

where the type name of the enumeration prefixedname is a prefixed name, such as:

enum ns1 workday { ns1 workday Mon, ns1 workday Tue, ns1 workday Wed, ns1 workday Thu,
ns1 workday Fri };
enum ns1 weekday { ns1 workday Mon, ns1 workday Tue, ns1 workday Wed, ns1 workday Thu,
ns1 workday Fri, ns1 workday Sat, ns1 workday Sun };

140

This ensures that the XML schema enumeration values are still simply Mon, Tue, Wed, Thu, Fri, Sat,
and Sun.

Caution: The following declaration:

enum ns1 workday {Mon, Tue, Wed, Thu, Fri};
enum ns1 weekday {Sat = 5, Sun = 6};

will not properly encode the weekday enumeration when you assume that workdays are part of
weekdays, because it lacks the named constants for workday in its enumeration list. All enumerations
must be self-contained and cannot use enum constants of other enumerations.

11.4.5 Boolean Enumeration Serialization for C

When developing a C Web service application, the C++ bool type should not be used since it is
not usually supported by the C compiler. Instead, an enumeration type should be used to serialize
true/false values as xsd:boolean Schema type enumeration values. The xsd:boolean XML Schema
type is defined as:

enum xsd boolean {false , true };

The value false , for example, is encoded as:

<xsd:boolean xsi:type="xsd:boolean">false</xsd:boolean>

Peculiar of the SOAP boolean type encoding is that it only defines the values 0 and 1, while
the built-in XML Schema boolean type also defines the false and true symbolic constants as valid
values. The following example declaration of an enumeration type lacks named constants altogether
to force encoding of the enumeration values as literal constants:

enum SOAP ENC boolean {};

The value 0, for example, is encoded with an integer literal:

<SOAP-ENC:boolean xsi:type="SOAP-ENC:boolean">0<SOAP-ENC:boolean>

11.4.6 Bitmask Enumeration Serialization

A bitmask is an enumeration of flags such as declared with C#’s [Flags] enum annotation. gSOAP
supports bitmask encoding and decoding for interoperability. However, bitmask types are not
standardized with SOAP RPC.

A special syntactic convention is used in the header file input to the gSOAP soapcpp2 compiler to
indicate the use of bitmasks with an asterisk:

enum * name { enum-constant, enum-constant, ... };

141

The gSOAP soapcpp2 compiler will encode the enumeration constants as flags, i.e. as a series of
powers of 2 starting with 1. The enumeration constants can be or-ed to form a bitvector (bitmask)
which is encoded and decoded as a list of symbolic values in SOAP. For example:

enum * ns machineStatus { ON, BELT, VALVE, HATCH};
int ns getMachineStatus(char *name, char *enum ns machineStatus result);

Note that the use of the enum does not require the asterisk, only the definition. The gSOAP
soapcpp2 compiler generates the enumeration:

enum ns machineStatus { ON=1, BELT=2, VALVE=4, HATCH=8};

A service operation implementation in a Web service can return:

int ns getMachineStatus(struct soap *soap, char *name, enum ns machineStatus result)
{ ...

*result = BELT — HATCH;
return SOAP OK;
}

11.5 Struct Serialization

A struct data type is encoded as an XML Schema complexType (SOAP-encoded compound data
type) such that the struct name forms the data type’s element name and schema type and the fields
of the struct are the data type’s accessors. This encoding is identical to the class instance encoding
without inheritance and method declarations, see Section 11.6 for further details. However, the
encoding and decoding of structs is more efficient compared to class instances due to the lack of
inheritance and the requirement by the serialization routines to check inheritance properties at run
time.

Certain type of fields of a struct can be (de)serialized as XML attributes using the @ type qualifier.
See Section 11.6.7 for more details.

See Section 10.3 for more details on the struct/class member field serialization and the resulting
element and attribute qualified forms.

11.6 Class Instance Serialization

A class instance is serialized as an XML Schema complexType (SOAP-encoded compound data
type) such that the class name forms the data type’s element name and schema type and the data
member fields are the data type’s accessors. Only the data member fields are encoded in the SOAP
payload. Class methods are not encoded.

The general form of a class declaration is:

class [namespace prefix]class name1 [:[public:] [private:] [protected:] [namespace prefix]class name2]
{

[public:] [private:] [protected:]

142

field1;
field2;
...
[public:] [private:] [protected:]
method1;
method2;
...
};

where

namespace prefix is the optional namespace prefix of the compound data type (see identifier trans-
lation rules 10.3)

class name1 is the element name of the compound data type (see identifier translation rules 10.3).

class name2 is an optional base class.

field is a field declaration (data member). A field MAY be declared static and const and MAY be
initialized.

method is a method declaration. A method MAY be declared virtual, but abstract methods are not
allowed. The method parameter declarations are REQUIRED to have parameter identifier
names.

[public:] [private:] [protected:] are OPTIONAL. Only members with public acces permission
can be serialized.

A class name is REQUIRED to be unique and cannot have the same name as a struct, enum, or
service operation name specified in the header file input to the gSOAP soapcpp2 compiler. The
reason is that service operation requests are encoded similarly to class instances in SOAP and they
are in principle undistinguishable (the method parameters are encoded just as the fields of a class).

Only single inheritance is supported by the gSOAP soapcpp2 compiler. Multiple inheritance is not
supported, because of the limitations of the SOAP protocol.

If a constructor method is present, there MUST also be a constructor declaration with empty
parameter list.

Classes should be declared “volatile” if you don’t want gSOAP to add serialization methods to
these classes, see Section 19.4 for more details.

Class templates are not supported by the gSOAP soapcpp2 compiler, but you can use STL containers,
see Section 11.11.8. You can also define your own containers similar to STL containers.

Certain type of fields of a struct can be (de)serialized as XML attributes using the @ type qualifier.
See Section 11.6.7 for more details.

See Section 10.3 for more details on the struct/class member field serialization and the resulting
element and attribute qualified forms.

Arrays may be embedded within a class (and struct) using a pointer field and size information, see
Section 11.11.7. This defines what is sometimes referred to in SOAP as “generics”.

143

Void pointers may be used in a class (or struct), but you have to add a type field so the gSOAP
runtime can determine the type of object pointed to, see Section 11.9.

A class instance is encoded as:

<[namespace-prefix:]class-name xsi:type="[namespace-prefix:]class-name">
<basefield-name1 xsi:type="...">...</basefield-name1>
<basefield-name2 xsi:type="...">...</basefield-name2>
...
<field-name1 xsi:type="...">...</field-name1>
<field-name2 xsi:type="...">...</field-name2>
...
</[namespace-prefix:]class-name>

where the field-name accessors have element-name representations of the class fields and the
basefield-name accessors have element-name representations of the base class fields. (The optional
parts resulting from the specification are shown enclosed in [].)

The decoding of a class instance allows any ordering of the accessors in the SOAP payload. However,
if a base class field name is identical to a derived class field name because the field is overloaded,
the base class field name MUST precede the derived class field name in the SOAP payload for
decoding. gSOAP guarantees this, but interoperability with other SOAP implementations is cannot
be guaranteed.

11.6.1 Example

The following example declares a base class ns Object and a derived class ns Shape:

// Contents of file ”shape.h”:
class ns Object
{

public:
char *name;
};
class ns Shape : public ns Object
{

public:
int sides;
enum ns Color {Red, Green, Blue} color;
ns Shape();
ns Shape(int sides, enum ns Green color);
˜ns Shape();
};

The implementation of the methods of class ns Shape must not be part of the header file and need
to be defined elsewhere.

An instance of class ns Shape with name Triangle, 3 sides, and color Green is encoded as:

<ns:Shape xsi:type="ns:Shape">
<name xsi:type="string">Triangle</name>

144

<sides xsi:type="int">3</sides>
<color xsi:type="ns:Color">Green</color>
</ns:shape>

The namespace URI of the namespace prefix ns must be defined by a namespace mapping table,
see Section 10.4.

11.6.2 Initialized static const Fields

A data member field of a class declared as static const is initialized with a constant value at compile
time. This field is encoded in the serialization process, but is not decoded in the deserialization
process. For example:

// Contents of file ”triangle.h”:
class ns Triangle : public ns Object
{

public:
int size;
static const int sides = 3;
};

An instance of class ns Triangle is encoded in SOAP as:

<ns:Triangle xsi:type="ns:Triangle">
<name xsi:type="string">Triangle</name>
<size xsi:type="int">15</size>
<sides xsi:type="int">3>/sides>
</ns:Triangle>

Decoding will ignore the sides field’s value.

Caution: The current gSOAP implementation does not support encoding static const fields, due
to C++ compiler compatibility differences. This feature may be provided the future.

11.6.3 Class Methods

A class declaration in the header file input to the gSOAP soapcpp2 compiler MAY include method
declarations. The method implementations MUST NOT be part of the header file but are required
to be defined in another C++ source that is externally linked with the application. This convention
is also used for the constructors and destructors of the class.

Dynamic binding is supported, so a method MAY be declared virtual.

11.6.4 Getter and Setter Methods

Setter and getter methods are invoked at run time upon serialization and deserialization of class
instances, respectively. The use of setter and getter methods adds more flexibility to the serialization
and deserialization process.

145

A setter method is called in the serialization phase from the virtual soap serialization method gener-
ated by the gSOAP soapcpp2 compiler. You can use setter methods to process a class instance just
before it is serialized. A setter method can be used to convert application data, such as translating
transient application data into serializable data, for example. You can also use setter methods to
retrieve dynamic content and use it to update a class instance right before serialization. Remember
setters as “set to serialize” operations.

Getter methods are invoked after deserialization of the instance. You can use them to adjust the
contents of class instances after all their members have been deserialized. Getters can be used
to convert deserialized members into transient members and even invoke methods to process the
deserialized data on the fly.

Getter and setter methods have the following signature:

[virtual] int get(struct soap *soap) [const];
[virtual] int set(struct soap *soap);

The active soap struct will be passed to the get and set methods. The methods should return
SOAP OK when successful. A setter method should prepare the contents of the class instance for
serialization. A getter method should process the instance after deserialization.

Here is an example of a base64 binary class:

class xsd base64Binary
{ public:

unsignedchar * ptr;
int size;
int get(struct soap *soap);
int set(struct soap *soap);
};

Suppose that the type and options members of the attachment should be set when the class is about
to be serialized. This can be accomplished with the set method from the information provided by
the ptr to the data and the soap struct passed to the set method (you can pass data via the
void*soap.user field).

The get method is invoked after the base64 data has been processed. You can use it for post-
processing purposes.

Here is another example. It defines a primitive update type. The class is a wrapper for the time t

type, see Section 11.3.2. Therefore, elements of this type contain xsd:dateType data.

class update
{ public:

time t item;
int set(struct soap *soap);
};

The setter method assigns the current time:

int update::set(struct soap *soap)
{

146

this-> item = time(NULL);
return SOAP OK;
}

Therefore, serialization results in the inclusion of a time stamp in XML.

Caution: a get method is invoked only when the XML element with its data was completely parsed.
The method is not invoked when the element is an xsi:nil element or has an href attribute.

Caution: The soap serialize method of a class calls the setter (when provided). However, the
soap serialize method is declared const while the setter should be allowed to modify the contents
of the class instance. Therefore, the gSOAP-generated code recasts the instance and the const is
removed when invoking the setter.

11.6.5 Streaming XML with Getter and Setter Methods

Getter methods enable streaming XML operations. A getter method is invoked when the object
is deserialized and the rest of the SOAP/XML message has not been processed yet. For example,
you can add a getter method to the SOAP Header class to implement header processing logic that
is activated as soon as the SOAP Header is received. An example code is shown below:

class h Authentication
{ public:

char *id;
int get(struct soap *soap);
};
class SOAP ENV Header
{ public:

h Authentication *h authentication;
};

The Authentication SOAP Header field is instantiated and decoded. After decoding, the getter
method is invoked, which can be used to check the id before the rest of the SOAP message is
processed.

11.6.6 Polymorphism, Derived Classes, and Dynamic Binding

Interoperability between client and service applications developed with gSOAP is established even
when clients and/or services use derived classes instead of the base classes used in the declaration
of the service operation parameters. A client application MAY use pointers to instances of derived
classes for the input parameters of a service operation. If the service was compiled with a declaration
and implementation of the derived class, the service operation base class input parameters are
demarshalled and a derived class instance is created instead of a base class instance. If the service
did not include a declaration of the derived class, the derived class fields are ignored and a base
class instance is created. Therefore, interoperability is guaranteed even when the client sends an
instance of a derived classes and when a service returns an instance of a derived class.

The following example declares Base and Derived classes and a service operation that takes a
pointer to a Base class instance and returns a Base class instance:

147

// Contents of file ”derived.h”
class Base
{

public:
char *name;
Base();
virtual void print();
};
class Derived : public Base
{

public:
int num;
Derived();
virtual void print();
};
int method(Base *in, struct methodResponse { Base *out; } &result);

This header file specification is processed by the gSOAP soapcpp2 compiler to produce the stub
and skeleton routines which are used to implement a client and service. The pointer of the service
operation is also allowed to point to Derived class instances and these instances will be marshalled
as Derived class instances and send to a service, which is in accord to the usual semantics of
parameter passing in C++ with dynamic binding.

The Base and Derived class method implementations are:

// Method implementations of the Base and Derived classes:
#include ”soapH.h”
...
Base::Base()
{

cout << ”created a Base class instance” << endl;
}
Derived::Derived()
{

cout << ”created a Derived class instance” << endl;
}
Base::print()
{

cout << ”print(): Base class instance ” << name << endl;
}
Derived::print()
{

cout << ”print(): Derived class instance ” << name << ” ” << num << endl;
}

Below is an example CLIENT application that creates a Derived class instance that is passed as the
input parameter of the service operation:

// CLIENT
#include ”soapH.h”
int main()

148

{
struct soap soap;
soap init(&soap);
Derived obj1;
Base *obj2;
struct methodResponse r;
obj1.name = ”X”;
obj1.num = 3;
soap call method(&soap, url, action, &obj1, r);
r.obj2->print();
}
...

The following example SERVER1 application copies a class instance (Base or Derived class) from
the input to the output parameter:

// SERVER1
#include ”soapH.h”
int main()
{

soap serve(soap new());
}
int method(struct soap *soap, Base *obj1, struct methodResponse &result)
{

obj1->print();
result.obj2 = obj1;
return SOAP OK;
}
...

The following messages are produced by the CLIENT and SERVER1 applications:

CLIENT: created a Derived class instance
SERVER1: created a Derived class instance
SERVER1: print(): Derived class instance X 3
CLIENT: created a Derived class instance
CLIENT: print(): Derived class instance X 3

Which indicates that the derived class kept its identity when it passed through SERVER1. Note
that instances are created both by the CLIENT and SERVER1 by the demarshalling process.

Now suppose a service application is developed that only accepts Base class instances. The header
file is:

// Contents of file ”base.h”:
class Base
{

public:
char *name;
Base();
virtual void print();

149

};
int method(Base *in, Base *out);

This header file specification is processed by the gSOAP soapcpp2 tool to produce skeleton routine
which is used to implement a service (so the client will still use the derived classes).

The method implementation of the Base class are:

// Method implementations of the Base class:
#include ”soapH.h”
...
Base::Base()
{

cout << ”created a Base class instance” << endl;
}
Base::print()
{

cout << ”print(): Base class instance ” << name << endl;
}

And the SERVER2 application is that uses the Base class is:

// SERVER2
#include ”soapH.h”
int main()
{

soap serve(soap new());
}
int method(struct soap *soap, Base *obj1, struct methodResponse &result)
{

obj1->print();
result.obj2 = obj1;
return SOAP OK;
}
...

Here are the messages produced by the CLIENT and SERVER2 applications:

CLIENT: created a Derived class instance
SERVER2: created a Base class instance
SERVER2: print(): Base class instance X
CLIENT: created a Base class instance
CLIENT: print(): Base class instance X

In this example, the object was passed as a Derived class instance to SERVER2. Since SERVER2

only implements the Base class, this object is converted to a Base class instance and send back to
CLIENT.

150

11.6.7 XML Attributes

The SOAP RPC/LIT and SOAP DOC/LIT encoding styles support XML attributes in SOAP
messages while SOAP RPC with “Section 5” encoding does not support XML attributes other
than the SOAP and XSD specific attributes. SOAP RPC “Section 5” encoding has advantages for
cross-language interoperability and data encodings such as graph serialization. However, RPC/LIT
and DOC/LIT enables direct exchange of XML documents, which may include encoded application
data structures. Language interoperability is compromised, because no mapping between XML and
the typical language data types is defined. The meaning of the RPC/LIT and DOC/LIT XML
content is Schema driven rather than application/language driven.

gSOAP supports XML attribute (de)serialization of members in structs and classes. Attributes
are primitive XSD types, such as strings, enumerations, boolean, and numeric types. To declare
an XML attribute in a struct/class, the qualifier @ is used with the type of the attribute. The
type must be primitive type (including enumerations and strings), which can be declared with or
without a typedef to associate a XSD type with the C/C+ type. For example

typedef char *xsd string;
typedef bool *xsd boolean;
enum ns state { 0, 1, 2 };
struct ns myStruct
{

@ xsd string ns type; // encode as XML attribute ’ns:type’ of type ’xsd:string’
@ xsd boolean ns flag = false; // encode as XML attribute ’ns:flag’ of type ’xsd:boolean’
@ enum ns state ns state = 2; // encode as XML attribute ’ns:state’ of type ’ns:state’
struct ns myStruct *next;
};

The @ qualifier indicates XML attribute encoding for the ns type, ns flag, and ns state fields. Note
that the namespace prefix ns is used to distinguish these attributes from any other attributes such
as xsi:type (ns:type is not to be confused with xsi:type).

Default values can be associated with any field that has a primitive type in a struct/class, as is
illustrated in this example. The default values are used when the receiving message does not contain
the corresponding values.

String attributes are optional. Other type of attributes should be declared as pointers to make
them optional:

struct ns myStruct
{

@int *a; // omitted when NULL
};

Because a service operation request and response is essentially a struct, XML attributes can also
be associated with method requests and responses. For example

int ns myMethod(@char *ns name, ...);

Attributes can also be attached to the dynamic arrays, binary types, and wrapper classes/structs
of primitive types. Wrapper classes are described in Section 11.3.2. For example

151

struct xsd string
{

char * item;
@ xsd boolean flag;
};

and

struct xsd base64Binary
{

unsigned char * ptr;
int size;
@ xsd boolean flag;
};

The attribute declarations MUST follow the item, ptr, and size fields which define the charac-
teristics of wrapper structs/classes and dynamic arrays.

Caution: Do not use XML attributes with SOAP RPC encoding. You can only use attributes
with RPC literal encoding.

11.6.8 QName Attributes and Elements

gSOAP ensures the proper decoding of XSD QNames. An element or attribute with type QName
(Qualified Name) contains a namespace prefix and a local name. You can declare a QName type
as a typedef char *xsd QName. Values of type QName are internally handled as regular strings.
gSOAP takes care of the proper namespace prefix mappings when deserializing QName values. For
example

typedef char *xsd QName;
struct ns myStruct
{

xsd QName elt = ”ns:xyz”; // QName element with default value ”ns:xyz”
@ xsd QName att = ”ns:abc”; // QName attribute with default value ”ns:abc”
};

When the elt and att fields are serialized, their string contents are just transmitted (which means
that the application is responsible to ensure proper formatting of the QName strings prior to
transmission). When the fields are deserialized however, gSOAP takes care mapping the qualifiers
to the appropriate namespace prefixes. Suppose that the inbound value for the elt is x:def, where
the namespace name associated with the prefix x matches the namespace name of the prefix ns (as
defined in the namespace mapping table). Then, the value is automatically converted into ns:def.
If the namespace name is not in the table, then x:def is converted to ”URI”:def where "URI" is the
namespace URI bound to x in the message received. This enables an application to retrieve the
namespace information, whether it is in the namespace mapping table or not.

Note: QName is a pre-defined typedef type and used by gSOAP to (de)serialize SOAP Fault codes
which are QName elements.

152

11.7 Union Serialization

A union is only serialized if the union is used within a struct or class declaration that includes a int

union field that acts as a discriminant or selector for the union fields. The selector stores run-time
usage information about the union fields. That is, the selector is used to enumerate the union fields
such that the gSOAP engine is able to select the correct union field to serialize.

A union within a struct or class with a selector field represents xs:choice within a Schema com-
plexType component. For example:

struct ns PO
{ ... };
struct ns Invoice
{ ... };
union ns PO or Invoice
{

struct ns PO po;
struct ns Invoice invoice;
};
struct ns composite
{

char *name;
int union;
union ns PO or Invoice value;
};

The union ns PO or Invoice is expanded as a xs:choice:

<complexType name="composite">
<sequence>
<element name="name" type="xsd:string"/>
<choice>

<element name="po" type="ns:PO"/>
<element name="invoice" type="ns:Invoice"/>

</choice>
</sequence>

</complexType>

Therefore, the name of the union and field can be freely chosen. However, the union name should be
qualified (as shown in the example) to ensure instances of XML Schemas with elementFormDefault="qualified"

are correctly serialized (po and invoice are ns: qualified).

The int union field selector’s values are determined by the soapcpp2 compiler. Each union field
name has a selector value formed by:

SOAP UNION union-name field-name

These selector values enumerate the union fields starting with 1. The value 0 can be assigned to
omit the serialization of the union, but only if explicitly allowed by validation rules, which requires
minOccurs="0" for the xs:choice as follows:

153

struct ns composite
{

char *name;
int union 0; // <choice minOccurs="0">
union ns PO or Invoice value;
};

This way we can treat the union as an optional data item by setting union=0.

Since 2.7.16 it is also possible to use a ’$’ as a special marker to annotate a selector field that must
be of type int and the field name is no longer relevant:

struct ns composite
{

char *name;
$int select 0; // <choice minOccurs="0">
union ns PO or Invoice value;
};

The following example shows how the struct ns composite instance is initialized for serialization
using the above declaration:

struct ns composite data;
data.name = ”...”;
data.select = SOAP UNION ns PO or Invoice po; // select PO
data.value.po.number = ...; // populate the PO

Note that failing to set the selector to a valid union field can lead to a crash of the gSOAP serializer
because it will attempt to serialize an invalid union field.

For deserialization of union types, the selector will be set to 0 (when permitted) by the gSOAP
deserializer or set to one of the union field selector values as determined by the XML payload.

When more than one union is used in a struct or class, the union selectors must be renamed to
avoid name clashes by using suffixes as in:

struct ns composite
{

char *name;
$int sel value; // = SOAP UNION ns PO or Invoice [po—invoice]
union ns PO or Invoice value;
$int sel data; // = SOAP UNIO ns Email or Fax [email—fax]
union ns Email or Fax data;
};

11.8 Serializing Pointer Types

The serialization of a pointer to a data type amounts to the serialization of the data type in SOAP
and the SOAP encoded representation of a pointer to the data type is indistinguishable from the
encoded representation of the data type pointed to.

154

11.8.1 Multi-Referenced Data

A data structure pointed to by more than one pointer is serialized as SOAP multi-reference data.
This means that the data will be serialized only once and identified with a unique id attribute.
The encoding of the pointers to the shared data is done through the use of href or ref attributes
to refer to the multi-reference data. See Section 9.12 on options to control the serialization of
multi-reference data. To turn multi-ref off, use SOAP XML TREE to process plain tree-based XML.
To completely eliminate multi-ref (de)serialization use the WITH NOIDREF compile-time flag to
permanently disable id-href processing. Cyclic C/C++ data structures are encoded with multi-
reference SOAP encoding. Consider for example the following a linked list data structure:

typedef char *xsd string;
struct ns list
{

xsd string value;
struct ns list *next;
};

Suppose a cyclic linked list is created. The first node contains the value ”abc” and points to a node
with value ”def” which in turn points to the first node. This is encoded as:

<ns:list id="1" xsi:type="ns:list">
<value xsi:type="xsd:string">abc</value>
<next xsi:type="ns:list">
<value xsi:type="xsd:string">def</value>
<next href="#1"/>

</next>
</ns:list>

In case multi-referenced data is received that “does not fit in a pointer-based structure”, the data is
copied. For example, the following two structs are similar, except that the first uses pointer-based
fields while the other uses non-pointer-based fields:

typedef long xsd int;
struct ns record
{

xsd int *a;
xsd int *b;
} P;
struct ns record
{

xsd int a;
xsd int b;
} R;
...

P.a = &n;
P.b = &n;

...

Since both a and b fields of P point to the same integer, the encoding of P is multi-reference:

155

<ns:record xsi:type="ns:record">

<b href="#1"/>

</ns:record>
<id id="1" xsi:type="xsd:int">123</id>

Now, the decoding of the content in the R data structure that does not use pointers to integers
results in a copy of each multi-reference integer. Note that the two structs resemble the same XML
data type because the trailing underscore will be ignored in XML encoding and decoding.

11.8.2 NULL Pointers and Nil Elements

A NULL pointer is not serialized, unless the pointer itself is pointed to by another pointer (but see
Section 9.12 to control the serialization of NULLs). For example:

struct X
{

int *p;
int **q;
}

Suppose pointer q points to pointer p and suppose p=NULL. In that case the p pointer is serialized
as

<... id="123" xsi:nil="true"/>

and the serialization of q refers to href="#123". Note that SOAP 1.1 does not support pointer to
pointer types (!), so this encoding is specific to gSOAP. The pointer to pointer encoding is rarely
used in codes anyway. More common is a pointer to a data type such as a struct with pointer fields.

Caution: When the deserializer encounters an XML element that has a xsi:nil="true" attribute
but the corresponding C++ data is not a pointer or reference, the deserializer will terminate with a
SOAP NULL fault when the SOAP XML STRICT flag is set. The types section of a WSDL description
contains information on the “nilability” of data.

11.9 Void Pointers

In general, void pointers (void*) cannot be (de)serialized because the type of data referred to is
untyped. To enable the (de)serialization of the void pointers that are members of structs or classes,
you can insert a int type field right before the void pointer field. The int type field contains run
time information on the type of the data pointed to by void* member in a struct/class to enable
the (de)serialization of this data. The int type field is set to a SOAP TYPE X value, where X is the
name of a type. gSOAP generates the SOAP TYPE X definitions in soapH.h and uses them internally
to uniquely identify the type of each object. The type naming conventions outlined in Section 7.5.3
are used to determine the type name for X.

Here is an example to illustrate the (de)serialization of a void* field in a struct:

156

struct myStruct
{

int type; // the SOAP TYPE pointed to by p
void *p;
};

The type integer can be set to 0 at run time to omit the serialization of the void pointer field.

The following example illustrates the initialization of myStruct with a void pointer to an int:

struct myStruct S;
int n;
S.p = &n;
S. type = SOAP TYPE int;

The serialized output of S contains the integer.

The deserializer for myStruct will automatically set the type field and void pointer to the deserialized
data, provided that the XML content for p carries the xsi:type attribute from which gSOAP can
determine the type.

Important: when (de)serializing strings via a void* field, the void* pointer MUST directly point
to the string value rather than indirectly as with all other types. For example:

struct myStruct S;
S.p = (void*)”Hello”;
S. type = SOAP TYPE string;

This is the case for all string-based types, including types defined with typedef char*.

You may use an arbitrary suffix with the type fields to handle multiple void pointers in structs/classes.
For example

struct myStruct
{

int typeOfp; // the SOAP TYPE pointed to by p
void *p;
int typeOfq; // the SOAP TYPE pointed to by q
void *q;
};

Because service method parameters are stored within structs, you can use type and void* parame-
ters to pass polymorphic arguments without having to define a C++ class hierarchy (Section 11.6.6).
For example:

typedef char *xsd string;
typedef int xsd int;
typedef float xsd float;
enum ns status { on, off };
struct ns widget { xsd string name; xsd int part; }; int ns myMethod(int type, void *data,
struct ns myMethodResponse { int type; void *return ; } *out);

157

This method has a polymorphic input parameter data and a polymorphic output parameter return .
The type parameters can be one of SOAP TYPE xsd string, SOAP TYPE xsd int, SOAP TYPE xsd float,
SOAP TYPE ns status, or SOAP TYPE ns widget. The WSDL produced by the gSOAP soapcpp2 com-
piler declares the polymorphic parameters of type xsd:anyType which is ”too loose” and doesn’t
allow the gSOAP importer to handle the WSDL accurately. Future gSOAP releases might replace
xsd:anyType with a choice schema type that limits the choice of types to the types declared in the
header file.

11.10 Fixed-Size Arrays

Fixed size arrays are encoded as per SOAP 1.1 one-dimensional array types. Multi-dimensional
fixed size arrays are encoded by gSOAP as nested one-dimensional arrays in SOAP. Encoding of
fixed size arrays supports partially transmitted and sparse array SOAP formats.

The decoding of (multi-dimensional) fixed-size arrays supports the SOAP multi-dimensional array
format as well as partially transmitted and sparse array formats.

An example:

// Contents of header file ”fixed.h”:
struct Example
{

float a[2][3];
};

This specifies a fixed-size array part of the struct Example. The encoding of array a is:

<a xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="float[][2]">
<SOAP-ENC:Array xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="float[3]"
<float xsi:type="float">...</float>
<float xsi:type="float">...</float>
<float xsi:type="float">...</float>
</SOAP-ENC:Array>
<SOAP-ENC:Array xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="float[3]"
<float xsi:type="float">...</float>
<float xsi:type="float">...</float>
<float xsi:type="float">...</float>
</SOAP-ENC:Array>

Caution: Any decoded parts of a (multi-dimensional) array that do not “fit” in the fixed size array
are ignored by the deserializer.

11.11 Dynamic Arrays

As the name suggests, dynamic arrays are much more flexible than fixed-size arrays and dynamic
arrays are better adaptable to the SOAP encoding and decoding rules for arrays. In addition,
a typical C application allocates a dynamic array using malloc, assigns the location to a pointer

158

variable, and deallocates the array later with free. A typical C++ application allocates a dynamic
array using new, assigns the location to a pointer variable, and deallocates the array later with
delete. Such dynamic allocations are flexible, but pose a problem for the serialization of data: how
does the array serializer know the length of the array to be serialized given only a pointer to the
sequence of elements? The application stores the size information somewhere. This information
is crucial for the array serializer and has to be made explicitly known to the array serializer by
packaging the pointer and array size information within a struct or class.

11.11.1 SOAP Array Bounds Limits

SOAP encoded arrays use the SOAP-ENC:Array type and the SOAP-ENC:arrayType attribute to define
the array dimensionality and size. As a security measure to avoid denial of service attacks based on
sending a huge array size value requiring the allocation of large chunks of memory, the total number
of array elements set by the SOAP-ENC:arrayType attribute cannot exceed SOAP MAXARRAYSIZE,
which is set to 100,000 by default. This constant is defined in stdsoap2.h. This constant only
affects multi-dimensional arrays and the dimensionality of the receiving array will be lost when the
number of elements exceeds 100,000. One-dimensional arrays will be populated in sequential order
as expected.

11.11.2 One-Dimensional Dynamic SOAP Arrays

A special form of struct or class is used to define one-dimensional dynamic SOAP-encoded arrays.
Each array has a pointer variable and a field that records the number of elements the pointer points
to in memory.

The general form of the struct declaration that contains a one-dimensional dynamic SOAP-encoded
array is:

struct some name
{

Type * ptr; // pointer to array of elements in memory
int size; // number of elements pointed to
[[static const] int offset [= ...];] // optional SOAP 1.1 array offset
... // anything that follows here will be ignored
};

where Type MUST be a type associated with an XML Schema or MUST be a primitive type. If
these conditions are not met, a vector-like XML (de)serialization is used (see Section 11.11.7). A
primitive type can be used with or without a typedef. If the array elements are structs or classes,
then the struct/class type names should have a namespace prefix for schema association, or they
should be other (nested) dynamic arrays.

An alternative to a struct is to use a class with optional methods that MUST appear after the ptr

and size fields:

class some name
{

159

public:
Type * ptr;
int size;
[[static const] int offset [= ...];]
method1;
method2;
... // any fields that follow will be ignored
};

To encode the data type as an array, the name of the struct or class SHOULD NOT have a namespace
prefix, otherwise the data type will be encoded and decoded as a generic vector, see Section 11.11.7.

The deserializer of a dynamic array can decode partially transmitted and/or SOAP sparse arrays,
and even multi-dimensional arrays which will be collapsed into a one-dimensional array with row-
major ordering.

Caution: SOAP 1.2 does not support partially transmitted arrays. So the offset field of a dynamic
array is ignored.

11.11.3 Example

The following example header file specifies the XMethods Service Listing service getAllSOAPServices

service operation and an array of SOAPService data structures:

// Contents of file ”listing.h”:
class ns3 SOAPService
{

public:
int ID;
char *name;
char *owner;
char *description;
char *homepageURL;
char *endpoint;
char *SOAPAction;
char *methodNamespaceURI;
char *serviceStatus;
char *methodName;
char *dateCreated;
char *downloadURL;
char *wsdlURL;
char *instructions;
char *contactEmail;
char *serverImplementation;
};
class ServiceArray
{

public:
ns3 SOAPService * ptr; // points to array elements
int size; // number of elements pointed to
ServiceArray();

160

˜ServiceArray();
void print();
};
int ns getAllSOAPServices(ServiceArray &return);

An example client application:

#include ”soapH.h” ...
// ServiceArray class method implementations:
ServiceArray::ServiceArray()
{

ptr = NULL;
size = 0;

}
ServiceArray::˜ServiceArray()
{ // destruction handled by gSOAP
}
void ServiceArray::print()
{

for (int i = 0; i ¡ size; i++)
cout << ptr[i].name << ”: ” << ptr[i].homepage << endl;

}
...
// Request a service listing and display results:
{

struct soap soap;
ServiceArray result;
const char *endpoint = ”www.xmethods.net:80/soap/servlet/rpcrouter”;
const char *action = ”urn:xmethodsServicesManager#getAllSOAPServices”;
...
soap init(&soap);
soap call ns getAllSOAPServices(&soap, endpoint, action, result);
result.print();
...
soap destroy(&soap); // dealloc class instances
soap end(&soap); // dealloc deserialized data
soap done(&soap); // cleanup and detach soap struct
}

11.11.4 One-Dimensional Dynamic SOAP Arrays With Non-Zero Offset

The declaration of a dynamic array as described in 11.11 MAY include an int offset field. When
set to an integer value, the serializer of the dynamic array will use this field as the start index of
the array and the SOAP array offset attribute will be used in the SOAP payload. Note that array
offsets is a SOAP 1.1 specific feature which is not supported in SOAP 1.2.

For example, the following header file declares a mathematical Vector class, which is a dynamic
array of floating point values with an index that starts at 1:

// Contents of file ”vector.h”:
typedef float xsd float;

161

class Vector
{

xsd float * ptr;
int size;
int offset;
Vector();
Vector(int n);
float& operator[](int i);
}

The implementations of the Vector methods are:

Vector::Vector()
{

ptr = NULL;
size = 0;
offset = 1;

}
Vector::Vector(int n)
{

ptr = (float*)malloc(n*sizeof(float));
size = n;
offset = 1;

}
Vector::˜Vector()
{

if (ptr)
free(ptr);

}
float& Vector::operator[](int i)
{

return ptr[i- offset];
}

An example program fragment that serializes a vector of 3 elements:

struct soap soap;
soap init(&soap);
Vector v(3);
v[1] = 1.0;
v[2] = 2.0;
v[3] = 3.0;
soap begin(&soap);
v.serialize(&soap);
v.put("vec");
soap end(&soap);

The output is a partially transmitted array:

<vec xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="xsd:float[4]" SOAP-ENC:offset="[1]">
<item xsi:type="xsd:float">1.0</item>

162

<item xsi:type="xsd:float">2.0</item>
<item xsi:type="xsd:float">3.0</item>
</vec>

Note that the size of the encoded array is necessarily set to 4 and that the encoding omits the
non-existent element at index 0.

The decoding of a dynamic array with an offset field is more efficient than decoding a dy-
namic array without an offset field, because the offset field will be assigned the value of the
SOAP-ENC:offset attribute instead of padding the initial part of the array with default values.

11.11.5 Nested One-Dimensional Dynamic SOAP Arrays

One-dimensional dynamic arrays MAY be nested. For example, using class Vector declared in the
previous section, class Matrix is declared:

// Contents of file ”matrix.h”:
class Matrix
{

public:
Vector * ptr;
int size;
int offset;
Matrix();
Matrix(int n, int m);
˜Matrix();
Vector& operator[](int i);
};

The Matrix type is essentially an array of pointers to arrays which make up the rows of a matrix.
The encoding of the two-dimensional dynamic array in SOAP will be in nested form.

11.11.6 Multi-Dimensional Dynamic SOAP Arrays

The general form of the struct declaration for K-dimensional (K > 1) dynamic arrays is:

struct some name
{

Type * ptr;
int size[K];
int offset[K];
... // anything that follows here will be ignored
};

where Type MUST be a type associated with an XML Schema, which means that it must be a
typedefed type in case of a primitive type, or a struct/class name with a namespace prefix for
schema association, or another dynamic array. If these conditions are not met, a generic vector
XML (de)serialization is used (see Section 11.11.7).

An alternative is to use a class with optional methods:

163

class some name
{

public:
Type * ptr;
int size[K];
int offset[K];
method1;
method2;
... // any fields that follow will be ignored
};

In the above, K is a constant denoting the number of dimensions of the multi-dimensional array.

To encode the data type as an array, the name of the struct or class SHOULD NOT have a namespace
prefix, otherwise the data type will be encoded and decoded as a generic vector, see Section 11.11.7.

The deserializer of a dynamic array can decode partially transmitted multi-dimensional arrays.

For example, the following declaration specifies a matrix class:

typedef double xsd double;
class Matrix
{

public:
xsd double * ptr;
int size[2];
int offset[2];
};

In contrast to the matrix class of Section 11.11.5 that defined a matrix as an array of pointers
to matrix rows, this class has one pointer to a matrix stored in row-major order. The size of the
matrix is determined by the size field: size[0] holds the number of rows and size[1] holds the
number of columns of the matrix. Likewise, offset[0] is the row offset and offset[1] is the columns
offset.

11.11.7 Encoding XML Generics Containing Dynamic Arrays

The XML “generics” concept discussed in the SOAP encoding protocols extends the concept of a
SOAP struct by allowing repetitions of elements within the struct. This is just a form of a repetition
of XML elements without the SOAP-encoded array requirements. While SOAP-encoded arrays are
more expressive (offset information to encode sparse arrays for example), simple repetitions of
values are used more frequently.

A simple generic reperition is an array-like data structure with a repetition of an element. To
achieve this, declare a dynamic array as a struct or class with a name that is qualified with a
namespace prefix. SOAP arrays are declared without prefix.

For example, we define a Map structure that contains a sequence of pairs of key-val:

struct ns Map
{

164

int size; // number of pairs
struct ns Binding {char *key; char *val;} *pair;
};

Since 2.7.16 it is also possible to use a ’$’ as a special marker to annotate a size field that must be
of type int or size t and the field name is no longer relevant:

struct ns Map
{

$int length; // number of pairs
struct ns Binding {char *key; char *val;} *pair;
};

This declares a dynamic array pointed to by pair and size size. The array will be serialized and
deserialized as a sequence of pairs:

<ns:Map xsi:type="ns:Map">
<pair xsi:type="ns:Binding">
<key>Joe</key>
<val>555 77 1234</val>
</pair>
<pair xsi:type="ns:Binding">
<key>Susan</key>
<val>555 12 6725</val>
</pair>
<pair xsi:type="ns:Binding">
<key>Pete</key>
<val>555 99 4321</val>
</pair>
</ns:Map>

Deserialization is less efficient compared to a SOAP-encoded array, because the size of the sequence
is not part of the SOAP encoding. Internal buffering is used by the deserializer to collect the
elements. When the end of the list is reached, the buffered elements are copied to a newly allocated
space on the heap for the dynamic array.

Multiple arrays can be used in a struct/class to support the concept of “generics”. Each array
results in a repetition of elements in the struct/class. This is achieved with a int size (or $int) field
in the struct/class where the next field (i.e. below the size field) is a pointer type. The pointer
type is assumed to point to an array of values at run time. The size field holds the number of
values at run time. Multiple arrays can be embedded in a struct/class with size fields that have
a distinct names. To make the size fields distinct, you can end them with a unique name suffix
such as sizeOfstrings, for example.

The general convention for embedding arrays is:

struct ns SomeStruct
{

...
int sizename1; // number of elements pointed to

165

Type1 *field1; // by this field
...
int sizename2; // number of elements pointed to
Type2 *field2; // by this field
...
};

where name1 and name2 are identifiers used as a suffix to distinguish the size field. These names
can be arbitrary and are not visible in XML.

In 2.7.16 and higher this is simplified with a ’$’ marker:

struct ns SomeStruct
{

...
$int name1; // number of elements pointed to
Type1 *field1; // by this field
...
$int name2; // number of elements pointed to
Type2 *field2; // by this field
...
};

For example, the following struct has two embedded arrays:

struct ns Contact
{

char *firstName;
char *lastName;
$intnPhones; // number of Phones
ULONG64 *phoneNumber; // array of phone numbers
$intnEmails; // number of emails
char **emailAddress; // array of email addresses
char *socSecNumber;
};

The XML serialization of an example ns Contact is:

<mycontact xsi:type="ns:Contact">
<firstName>Joe</firstName>
<lastName>Smith</lastName>
<phoneNumber>5551112222</phoneNumber>
<phoneNumber>5551234567</phoneNumber>
<phoneNumber>5552348901</phoneNumber>
<emailAddress>Joe.Smith@mail.com</emailAddress>
<emailAddress>Joe@Smith.com</emailAddress>
<socSecNumber>999999999</socSecNumber>

</mycontact>

11.11.8 STL Containers

gSOAP supports the STL containers std::deque, std::list, std::set, and std::vector.

166

STL containers can only be used within classes to declare members that contain multiple values.
This is somewhat similar to the embedding of arrays in structs in C as explained in Section 11.11.7,
but the STL container approach is more flexible.

You need to import stldeque.h, stllist.h, stlset.h, or stlvector.h to enable std::deque, std::list, std::set, and
std::vector (de)serialization. Here is an example:

#import ”stlvector.h”
class ns myClass
{ public:

std::vector<int> *number;
std::vector<xsd string> *name;
...
};

The use of pointer members is not required but advised. The reason is that interoperability with
other SOAP toolkits may lead to copying of ns myClass instances at run time when (de)serializing
multi-referenced data. When a copy is made, certain parts of the containers will be shared between
the copies which could lead to disaster when the classes with their containers are deallocated.
Another way to avoid this is to declare class ns myClass within other data types via a pointer.
(Interoperability between gSOAP clients and services does not lead to copying.)

The XML Schema that corresponds to the ns myClass type is

<complexType name="myClass">
<sequence>
<element name="number" type="xsd:int" minOccurs="1" maxOccurs="unbounded"/>
<element name="name" type="xsd:string" minOccurs="1" maxOccurs="unbounded"/>
...

</sequence>
</complexType>

You can specify the minOccurs and maxOccurs values as explained in Section 19.2.

You can also implement your own containers similar to STL containers. The containers must be
class templates and should define an iterator type, and void clear(), iterator begin(), iterator end(), and
iterator insert(iterator pos, const reference val). The iterator should have a dereference operator to access
the container’s elements. The dereference operator is used by gSOAP to send a sequence of XML
element values. The insert method can be used as a setter method. gSOAP reads a sequence of
XML element values and inserts them in the container via this method.

Here is in example user-defined container template class:

// simpleVector.h
template <class T>
class simpleVector
{
public:

typedef T value type;
typedef value type * pointer;
typedef const value type * const pointer;

167

typedef value type & reference;
typedef const value type & const reference;
typedef pointer iterator;
typedef const pointer const iterator;

protected:
iterator start;
iterator finish;
size t length;

public:
simpleVector() { clear(); }
˜simpleVector() { delete[] start; }
void clear() { start = finish = NULL; }
iterator begin() { return start; }
const iterator begin() const { return start; }
iterator end() { return finish; }
const iterator end() const { return finish; }
size t size() const { return finish-start; }
iterator insert(iterator pos, const reference val)
{

if (!start)
start = finish = new value type[length = 4];

else if (finish >= start + length)
{

iterator i = start;
iterator j = new value type[2 * length];
start = j;
finish = start + length;
length *= 2;
if (pos)

pos = j + (pos - i);
while (i != finish)

*j++ = *i++;
}
if (pos && pos != finish)
{ iterator i = finish;

iterator j = i - 1;
while (j != pos)

*i−− = *j−−;
}
*finish++ = val;
return pos;

}
};

To enable the container, we add the following two lines to our gSOAP header file:

#include ”simpleVector.h”
template <class T> class simpleVector;

The container class should not be defined in the gSOAP header file. It must be defined in a separate
header file (e.g. ”simpleVector.h”). The template <class T> class simpleVector declaration ensures
that gSOAP will recognize simpleVector as a container class.

168

Caution: when parsing XML content the container elements may not be stored in the same order
given in the XML content. When gSOAP parses XML it uses the insert container methods to store
elements one by one. However, element content that is “forwarded” with href attributes will be
appended to the container. Forwarding can take place with multi-referenced data that is referred
to from the main part of the SOAP 1.1 XML message to the independent elements that carry
ids. Therefore, your application should not rely on the preservation of the order of elements in a
container.

11.11.9 Polymorphic Dynamic Arrays and Lists

Polymorphic arrays (arrays of polymorphic element types) can be encoded when declared as an
array of pointers to class instances. For example:

class ns Object
{

public:
...
};
class ns Data: public ns Object
{

public:
...
};
class ArrayOfObject
{

public:
ns Object ** ptr; // pointer to array of pointers to Objects
int size; // number of Objects pointed to
int offset; // optional SOAP 1.1 array offset
};
class ns Objects
{

public:
std::vector<ns Object*> objects; // vector of pointers to objects
};

The pointers in the array can point to the ns Object base class or ns Data derived class instances
which will be serialized and deserialized accordingly in SOAP. That is, the array elements are
polymorphic.

Since we can’t use dynamic binding to support polymorphism in C, another mechanism is available
based on the serialization of void pointers, that is, dynamic serialization of data referenced by void
pointers, see Section 11.9.

struct wrapper
{

int type; // type T represented by SOAP TYPE T
void * item; // pointer to data of type T
};

169

struct ArrayOfObject
{

struct wrapper ptr; // pointer to array of pointers to Objects
int size; // number of Objects pointed to
int offset; // optional SOAP 1.1 array offset
};
struct ns Objects
{

int size;
struct wrapper *objects; // array of pointers to wrapped types
};

11.11.10 How to Change the Tag Names of the Elements of a SOAP Array or List

The ptr field in a struct or class declaration of a dynamic array may have an optional suffix part
that describes the name of the tags of the SOAP array XML elements. The suffix is part of the
field name:

Type * ptrarray elt name

The suffix describes the tag name to be used for all array elements. The usual identifier to XML
translations apply, see Section 10.3. The default XML element tag name for array elements is item

(which corresponds to the use of field name ptritem).

Consider for example:

struct ArrayOfstring
{

xsd string * ptrstring; int size; };

The array is serialized as:

<array xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="xsd:string[2]">
<string xsi:type="xsd:string">Hello</string>
<string xsi:type="xsd:string">World</string>
</array>

SOAP 1.1 and 1.2 do not require the use of a specific tag name for array elements. gSOAP will
deserialize a SOAP array while ignoring the tag names. Certain XML Schemas used in doc/literal
encoding may require the declaration of array element tag names.

11.12 Base64Binary XML Schema Type Encoding

The base64Binary XML Schema type is a special form of dynamic array declared with a pointer
(ptr) to an unsigned char array.

For example using a struct:

170

struct xsd base64Binary
{

unsigned char * ptr;
int size;
};

Or with a class:

class xsd base64Binary
{

public:
unsigned char * ptr;
int size;
};

When compiled by the gSOAP soapcpp2 tool, this header file specification will generate base64Binary

serializers and deserializers.

The SOAP ENC:base64 encoding is another type for base 64 binary encoding specified by the SOAP
data type schema and some SOAP applications may use this form (as indicated by their WSDL
descriptions). It is declared by:

struct SOAP ENC base64
{

unsigned char * ptr;
int size;
};

Or with a class:

class SOAP ENC base64
{

unsigned char * ptr;
int size;
};

When compiled by the gSOAP soapcpp2 tool, this header file specification will generate SOAP-ENC:base64
serializers and deserializers.

The advantage of using a class is that methods can be used to initialize and manipulate the ptr

and size fields. The user can add methods to this class to do this. For example:

class xsd base64Binary
{

public:
unsigned char * ptr;
int size;
xsd base64Binary(); // Constructor
xsd base64Binary(struct soap *soap, int n); // Constructor
˜xsd base64Binary(); // Destructor
unsigned char *location(); // returns the memory location
int size(); // returns the number of bytes
};

171

Here are example method implementations:

xsd base64Binary::xsd base64Binary()
{

ptr = NULL;
size = 0;

}
xsd base64Binary::xsd base64Binary(struct soap *soap, int n)
{

ptr = (unsigned char*)soap malloc(soap, n);
size = n;

}
xsd base64Binary::˜xsd base64Binary()
{ }
unsigned char *xsd base64Binary::location()
{

return ptr;
}
int xsd base64Binary::size()
{

return size;
}

The following example in C/C++ reads from a raw image file and encodes the image in SOAP
using the base64Binary type:

...
FILE *fd = fopen("image.jpg", "rb");
xsd base64Binary image(&soap, filesize(fd));
fread(image.location(), image.size(), 1, fd);
fclose(fd);
soap begin(&soap);
image.soap serialize(&soap);
image.soap put(&soap, "jpegimage", NULL);
soap end(&soap);
...

where filesize is a function that returns the size of a file given a file descriptor.

Reading the xsd:base64Binary encoded image.

...
xsd base64Binary image;
soap begin(&soap);
image.get(&soap, "jpegimage");
soap end(&soap);
...

The struct or class name soap enc base64 should be used for SOAP-ENC:base64 schema type instead
of xsd base64Binary.

172

11.13 hexBinary XML Schema Type Encoding

The hexBinary XML Schema type is a special form of dynamic array declared with the name
xsd hexBinary and a pointer (ptr) to an unsigned char array.

For example, using a struct:

struct xsd hexBinary
{

unsigned char * ptr;
int size;
};

Or using a class:

class xsd hexBinary
{

public:
unsigned char * ptr;
int size;
};

When compiled by the gSOAP soapcpp2 tool, this header file specification will generate base64Binary

serializers and deserializers.

11.14 Literal XML Encoding Style

gSOAP supports document/literal encoding by default. Just as with SOAP RPC encoding, literal
encoding requires the XML Schema of the message data to be provided e.g. in WSDL in order
for the gSOAP soapcpp2 compiler to generate the (de)serialization routines. Alternatively, the
optional DOM parser (dom.c and dom++.cpp) can be used to handle generic XML or arbitrary
XML documents can be (de)serialized into regular C strings or wide character strings (wchar t*) by
gSOAP (see Section 11.14.1).

The //gsoap service encoding, //gsoap service method-encoding, and //gsoap service method-response-encoding

directives explicitly enable SOAP encoded or literal encoded messages. For example, to enable RPC
encoding style for the entire service, use:

//gsoap ns service encoding: encoded

To enable encoding for particular service methods, use:

//gsoap ns service method-encoding: myMethod encoded
int ns myMethod(...)

To enable encoding for particular service methods responses when the method request is literal,
use:

//gsoap ns service method-response-encoding: myMethod encoded
int ns myMethod(...)

173

Instead of the encoded value, you can use literal, or a specific encoding style value.

Consider the following example that uses the directive to make the literal encoding explicit. The
LocalTimeByZipCode service operation of the LocalTime service provides the local time given a zip
code and uses literal encoding (with MS .NET). The following header file declares the method:

int LocalTimeByZipCode(char *ZipCode, char **LocalTimeByZipCodeResult);

Note that none of the data types need to be namespace qualified using namespace prefixes.

//gsoap ns service name: localtime
//gsoap ns service encoding: literal
//gsoap ns service namespace: http://alethea.net/webservices/
int ns LocalTimeByZipCode(char *ZipCode, char **LocalTimeByZipCodeResult);

In this case, the method name requires to be associated with a schema through a namespace prefix,
e.g. ns is used in this example. See Section 19.2 for more details on gSOAP directives. With these
directives, the gSOAP soapcpp2 compiler generates client and server sources with the specified
settings.

The example client program is:

#include ”soapH.h”
#include ”localtime.nsmap” // include generated map file
int main()
{

struct soap soap;
char *t;
soap init(&soap);
if (soap call ns LocalTimeByZipCode(&soap, ”http://alethea.net/webservices/LocalTime.asmx”,

”http://alethea.net/webservices/LocalTimeByZipCode”, ”32306”, &t))
soap print fault(&soap, stderr);

else
printf(”Time = %s\n”, t);

return 0;
}

To illustrate the manual doc/literal setting, the following client program sets the required properties
before the call:

#include ”soapH.h”
#include ”localtime.nsmap” // include generated map file
int main()
{

struct soap soap;
char *t;
soap init(&soap);
soap.encodingStyle = NULL; // don’t use SOAP encoding
soap set omode(&soap, SOAP XML TREE);” // don’t produce multi-ref data (but can accept)
if (soap call ns LocalTimeByZipCode(&soap, ”http://alethea.net/webservices/LocalTime.asmx”,

174

”http://alethea.net/webservices/LocalTimeByZipCode”, ”32306”, &t))
soap print fault(&soap, stderr);

else
printf(”Time = %s\n”, t);

return 0;
}

The SOAP request is:

POST /webservices/LocalTime.asmx HTTP/1.0
Host: alethea.net
Content-Type: text/xml; charset=utf-8
Content-Length: 479
SOAPAction: "http://alethea.net/webservices/LocalTimeByZipCode"

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
<SOAP-ENV:Body>
<LocalTimeByZipCode xmlns="http://alethea.net/webservices/">

<ZipCode>32306</ZipCode></LocalTimeByZipCode>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

11.14.1 Serializing and Deserializing Mixed Content XML With Strings

To declare a literal XML “type” to hold XML documents in regular strings, use:

typedef char *XML;

To declare a literal XML “type” to hold XML documents in wide character strings, use:

typedef wchar t *XML;

Note: only one of the two storage formats can be used. The differences between the use of regular
strings versus wide character strings for XML documents are:

• Regular strings for XML documents MUST hold UTF-8 encoded XML documents. That is,
the string MUST contain the proper UTF-8 encoding to exchange the XML document in
SOAP messages.

• Wide character strings for XML documents SHOULD NOT hold UTF-8 encoded XML doc-
uments. Instead, the UTF-8 translation is done automatically by the gSOAP runtime mar-
shalling routines.

Here is a C++ example of a service operation specification in which the parameters of the service
operation uses literal XML encoding to pass an XML document to a service and back:

175

typedef char *XML;
ns GetDocument(XML m XMLDoc, XML &m XMLDoc);

and in C:

typedef char *XML;
ns GetDocument(XML m XMLDoc, XML *m XMLDoc);

The ns Document is essentially a struct that forms the root of the XML document. The use of the
underscore in the ns Document response part of the message avoids the name clash between the
structs. Assuming that the namespace mapping table contains the binding of ns to http://my.org/

and the binding of m to http://my.org/mydoc.xsd, the XML message is:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ns="http://my.org/"
xmlns:m="http://my.org/mydoc.xsd"
SOAP-ENV:encodingStyle="">
<SOAP-ENV:Body>
<ns:GetDocument>

<XMLDoc xmlns="http://my.org/mydoc.xsd">
...

</XMLDoc>
</ns:Document>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

When using literal encoding of method parameters and response as shown in the example above,
the literal XML encoding style MUST be specified by setting soap.encodingStyle. For example, to
specify no constraints on the encoding style (which is typical) use NULL:

struct soap soap;
soap init(&soap);
soap.encodingStyle = NULL;

As a result, the SOAP-ENV:encodingStyle attribute will not appear in the SOAP payload.

For interoperability with Apache SOAP, use

struct soap soap;
soap init(&soap);
soap.encodingStyle = ”http://xml.apache.org/xml-soap/literalxml”;

When the response parameter is an XML type, it will store the entire XML response content but
without the enveloping response element.

The XML type can be used as part of any data structure to enable the rendering and parsing of
custom XML documents. For example:

176

typedef char *XML;
struct ns Data /* data in namespace ’ns’ */
{

int number;
char *name;
XML m document; /* XML document in default namespace ’m’ */
};
ns Example(struct ns Data data, struct ns ExampleResponse { struct ns Data data; } *out);

12 SOAP Fault Processing

A predeclared standard SOAP Fault data structure is generated by the gSOAP soapcpp2 tool for
exchanging exception messages. The built-in struct SOAP ENV Fault data structure is defined as:

struct SOAP ENV Fault
{

QName faultcode; // QName is builtin
char *faultstring;
char *faultactor;
struct SOAP ENV Detail *detail;
struct SOAP ENV Code *SOAP ENV Code; // MUST be a SOAP ENV Code struct defined

below
char *SOAP ENV Reason;
char *SOAP ENV Node;
char *SOAP ENV Role;
struct SOAP ENV Detail *SOAP ENV Detail; // SOAP 1.2 detail field
}; struct SOAP ENV Code
{

QName SOAP ENV Value;
struct SOAP ENV Code *SOAP ENV Subcode; };

struct SOAP ENV Detail
{

int type; // The SOAP TYPE of the object serialized as Fault detail
void *fault; // pointer to the fault object, or NULL
char * any; // any other detail element content (stored in XML format)
};

The first four fields in SOAP ENV Fault are SOAP 1.1 specific. The last five fields are SOAP 1.2
specific. You can redefine these structures in the header file. For example, you can use a class for
the SOAP ENV Fault and add methods for convenience.

The data structure content can be changed to the need of an application, but this is generally not
necessary because the application-specific SOAP Fault details can be serialized via the type and
fault fields in the SOAP ENV Detail field, see Section 11.9 on the serialization of data refered to by

type and fault.

The type field allows application data to be serialized as part of the SOAP Fault. The application
data SHOULD be defined as XML elements, which requires you to declare the type names with
a leading underscore to ensure that the types are compatible with XML elements and not just
simpleTypes and complexTypes.

177

When the skeleton of a service operation returns an error (see Section 10.2), then soap.fault contains
the SOAP Fault data at the receiving side (client).

Server-side faults are raised with soap sender fault or soap receiver fault. The soap sender fault call
should be used to inform that the sender is at fault and the sender (client) should not resend
the request. The soap receiver fault call should be used to indicate a temporary server-side problem,
so a sender (client) can resend the request later. For example:

int ns1 myMethod(struct soap *soap, ...)
{

...
return soap receiver fault(soap, ”Resource temporarily unavailable”, NULL); // return fault to

sender
}

In the example, the SOAP Fault details were empty (NULL). You may pass an XML fragment,
which will be literally included in the SOAP Fault message. For WS-I Basic Profile compliance,
you must pass an XML string with one or more namespace qualified elements, such as:

return soap receiver fault(soap, ”Resource temporarily unavailable”, ”<errorcode xmlns=’http://tempuri.org’>123</errorcode><errorinfo
xmlns=’http://tempuri.org’>abc</errorinfo>”);

When a service operation must raise an exception with application SOAP Fault details, it does so
by assigning the soap.fault field of the current reference to the runtime context with appropriate
data associated with the exception and by returning the error SOAP FAULT. For example:

soap receiver fault(soap, ”Stack dump”, NULL);
if (soap->version == 2) // SOAP 1.2 is used
{

soap->fault->SOAP ENV Detail = (struct SOAP ENV Detail*)soap malloc(soap, sizeof(struct
SOAP ENV Detail);

soap->fault->SOAP ENV Detail-> type = SOAP TYPE ns1 myStackDataType; // stack
type

soap->fault->SOAP ENV Detail->fault = sp; // point to stack
soap->fault->SOAP ENV Detail-> any = NULL; // no other XML data

}
else
{

soap->fault->detail = (struct SOAP ENV Detail*)soap malloc(soap, sizeof(struct SOAP ENV Detail);
soap->fault->detail-> type = SOAP TYPE ns1 myStackDataType; // stack type
soap->fault->detail->fault = sp; // point to stack
soap->fault->detail-> any = NULL; // no other XML data

}
return SOAP FAULT; // return from service operation call

When soap receiver fault allocates a fault struct, this data is removed with the soap end call (or
soap dealloc). Note that the soap receiver fault function is called to allocate the fault struct and set
the fault string and detail fields, i.e. soap receiver fault(soap, ”Stack dump”, NULL). The advantage is
that this is independent of SOAP 1.1 and SOAP 1.2. However, setting the custom detail fields

178

requires inspecting the SOAP version used, using the soap->version attribute which is 1 for SOAP
1.1 and 2 for SOAP 1.2.

Each service operation implementation in a service application can return a SOAP Fault upon an
exception by returning an error code, see Section 7.2.1 for details and an example. In addition, a
SOAP Fault can be returned by a service application through calling the soap send fault function.
This is useful in case the initialization of the application fails, as illustrated in the example below:

int main()
{

struct soap soap;
soap init(&soap);
some initialization code
if (initialization failed)
{

soap.error = soap receiver fault(&soap, "Init failed", NULL); // set the error condition
(SOAP FAULT)

soap send fault(&soap); // Send SOAP Fault to client
return 0; // Terminate

}
}

13 SOAP Header Processing

A predeclared standard SOAP Header data structure is generated by the gSOAP soapcpp2 tool for
exchanging SOAP messages with SOAP Headers. This predeclared data structure is:

struct SOAP ENV Header { };

which declares and empty header (some C and C++ compilers don’t accept empty structs, use
compile flag -DWITH NOEMPTYSTRUCT to avoid these errors).

To adapt the data structure to a specific need for SOAP Header processing, a new struct SOAP ENV Header

can be added to the header file input to the gSOAP compiler. A class for the SOAP Header data
structure can be used instead of a struct.

For example, the following header can be used for transaction control:

struct SOAP ENV Header
{ char *t transaction;
};

with client-side code:

struct soap soap;
soap init(&soap);

...
soap.header = NULL; // do not use a SOAP Header for the request (as set with soap init)
soap.actor = NULL; // do not use an actor (receiver is actor)

179

soap call method(&soap, ...);
if (soap.header) // a SOAP Header was received

cout << soap.header->t transaction;
// Can reset, modify, or set soap.header here before next call
soap call method(&soap, ...); // reuse the SOAP Header of the service response for the request
...

The SOAP Web service response can include a SOAP Header with a transaction number that the
client is supposed to use for the next service operation invocation to the service. Therefore, the
next request includes a transaction number:

...
<SOAP-ENV:Envelope ...>
<SOAP-ENV:Header>
<transaction xmlns="..." xsi:type="int">12345</transaction>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
...
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This is just an example and the transaction control is not a feature of SOAP but can be added
on by the application layer to implement stateful transactions between clients and services. At the
client side, the soap.actor attribute can be set to indicate the recipient of the header (the SOAP
SOAP-ENV:actor attribute).

A Web service can read and set the SOAP Header as follows:

int main()
{

struct soap soap;
soap.actor = NULL; // use this to accept all headers (default)
soap.actor = ”http://some/actor”; // accept headers destined for ”http://some/actor” only
soap serve(&soap);
}
...
int method(struct soap *soap, ...)
{

if (soap->header) // a Header was received
... = soap->header->t transaction;

else
soap->header = soap malloc(sizeof(struct SOAP ENV Header)); // alloc new header

... soap->header->t transaction = ...;
return SOAP OK;
}

See Section 19.2 on how to generate WSDL with the proper method-to-header-part bindings.

The SOAP-ENV:mustUnderstand attribute indicates the requirement that the recipient of the SOAP
Header (who must correspond to the SOAP-ENV:actor attribute when present or when the attribute
has the value SOAP-ENV:actor="http://schemas.xmlsoap.org/soap/actor/next") MUST handle the

180

Header part that carries the attribute. gSOAP handles this automatically on the background.
However, an application still needs to inspect the header part’s value and handle it appropriately. If
a service operation in a Web service is not able to do this, it should return SOAP MUSTUNDERSTAND

to indicate this failure.

The syntax for the header file input to the gSOAP soapcpp2 compiler is extended with a special
storage qualifier mustUnderstand. This qualifier can be used in the SOAP Header declaration to
indicate which parts should carry a SOAP-ENV:mustUnderstand=”1” attribute. For example:

struct SOAP ENV Header
{

char *t transaction;
mustUnderstand char *t authentication;
};

When both fields are set and soap.actor=”http://some/actor” then the message contains:

<SOAP-ENV:Envelope ...>
<SOAP-ENV:Header>
<transaction xmlns="...">5</transaction>
<authentication xmlns="..."
SOAP-ENV:actor="http://some/actor" SOAP-ENV:mustUnderstand="1">XX

</authentication>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
...
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

14 MIME Attachments

The gSOAP toolkit supports MIME attachments as per SOAP with Attachments (SwA) specifica-
tion (http://www.w3.org/TR/SOAP-attachments). In the following discussion, MIME attachment
data is assumed to be resident in memory for sending operations and MIME attachments received
will be stored in memory. MTOM and DIME attachments on the other hand can be streamed and
therefore MTOM/DIME attachment data does not need to be stored in memory, see Section 15
and 16.

Transmitting multipart/related MIME attachments with a SOAP/XML message is accomplished
with two functions, soap set mime and soap set mime attachment. The first function is for initialization
purposes and the latter function is used to specify meta data and content data for each attachment.

14.1 Sending a Collection of MIME Attachments (SwA)

The following functions should be used to set up a collection of multipart/related MIME attach-
ments for transmission with a SOAP/XML message.

181

Function
void soap set mime(struct soap *soap, const char *boundary, const char *start)
This function must be called first to initialize MIME attachment send operations (receives are auto-
matic). The function specifies a MIME boundary and start content ID used for the SOAP message
body. When boundary is NULL, an appropriate MIME boundary will be choosen (important: bound-
aries cannot occur in the SOAP/XML message and cannot occur in any of the MIME attachments
content). When a specific boundary value is provided, gSOAP will NOT verify that the boundary
is valid. When start is NULL, the start ID of the SOAP message is <SOAP-ENV:Envelope>.
int soap set mime attachment(struct soap *soap, char *ptr, size t size, enum soap mime encoding
encoding, const char *type, const char *id, const char *location, const char *description)
This function adds a new attachment to the list of attachments, where ptr and size re-
fer to the block of memory that holds the attachment data. The encoding parame-
ter specifies the content encoding of this block, where the value of encoding is one of
SOAP MIME 7BIT, SOAP MIME 8BIT, SOAP MIME BINARY, SOAP MIME QUOTED PRINTABLE,
SOAP MIME BASE64, SOAP MIME IETF TOKEN, or SOAP MIME X TOKEN. These constants re-
flect the content encoding defined in RFC2045 and you MUST adhere to the content encoding rules
defined by RFC2045. When in doubt, use SOAP MIME BINARY, since this encoding type covers
any content. The mandatory type string parameter is the MIME type of the data. The id string
parameter is the content ID of the MIME attachment. The optional location string parameter is
the content location of the attachment. The optional description string parameter holds a textual
description of the attachment (it may not contain any control characters). All parameter values are
copied, except ptr which must point to a valid location of the attachment data during the transfer.
The value SOAP OK is returned when the attachment was added. Otherwise a gSOAP error code
is returned.
void soap clr mime(struct soap *soap)
Disables MIME attachments, e.g. to avoid MIME attachments to be part of a SOAP Fault response
message.

When providing a MIME boundary with soap set mime, you have to make sure the boundary cannot
match any SOAP/XML message content. Or you can simply pass NULL and let gSOAP select a
safe boundary for you.

The internal list of attachments is destroyed with soap end, you should call this function sometime
after the message exchange was completed (the content of the block of memory referred to by the
ptr parameter is unaffected).

The following example shows how a multipart/related HTTP message with three MIME attach-
ments is set up and transmitted to a server. The first attachment contains the SOAP message.
The second and third attachments contain image data. In this example we let the SOAP message
body refer to the attachments using href attributes. The struct claim form data type includes a
definition of a href attribute for this purpose.

struct claim form form1, form2;
form1.href = "cid:claim061400a.tiff@claiming-it.com";
form2.href = "cid:claim061400a.jpeg@claiming-it.com";
/* initialize and enable MIME */
soap set mime(soap, "MIME_boundary", "<claim061400a.xml@claiming-it.com>");
/* add a base64 encoded tiff image (tiffImage points to base64 data) */
soap set mime attachment(soap, tiffImage, tiffLen, SOAP MIME BASE64, "image/tiff",

"<claim061400a.tiff@claiming-it.com>", NULL, NULL);
/* add a raw binary jpeg image (jpegImage points to raw data) */

182

soap set mime attachment(soap, jpegImage, jpegLen, SOAP MIME BINARY, "image/jpeg",
"<claim061400a.jpeg@claiming-it.com>", NULL, NULL);

/* send the forms as MIME attachments with this invocation */
if (soap call claim insurance claim auto(soap, form1, form2, ...))

// an error occurred
else

// process response

Note: the above example assumes that the boundary MIME_boundary does not match any part of
the SOAP/XML message.

The claim form struct is declared in the gSOAP header file as:

struct claim form
{ @char *href;
};

This data type defines the parameter data of the operation. The claim forms in the SOAP/XML
message consist of hrefs to the claim forms attached. The produced message is similar to the
last example shown in the SOAP with Attachments specification (http://www.w3.org/TR/SOAP-
attachments). Note that the use of href or other attributes for referring to the MIME attachments
is optional according to the SwA standard.

To associate MIME attachments with the request and response of a service operation in the gener-
ated WSDL, please see Section 16.1.

The server-side code to transmit MIME attachments back to a client is similar:

int claim insurance claim auto(struct soap *soap, ...)
{

soap set mime(soap, NULL, NULL); // enable MIME
// add a HTML document (htmlDoc points to data, where the HTML doc is stored in compliance

with 7bit encoding RFC2045)
if (soap set mime attachment(soap, htmlDoc, strlen(htmlDoc), SOAP MIME 7BIT, "text/html",

"<claim061400a.html@claiming-it.com>", NULL, NULL))
{

soap clr mime(soap); // don’t want fault with attachments
return soap->error;

}
return SOAP OK;
}

It is also possible to attach data to a SOAP fault message.

Caution: DIME in MIME is supported. However, gSOAP will not verify whether the MIME
boundary is present in the DIME attachments and therefore will not select a boundary that is
guaranteed to be unique. Therefore, you must provide a MIME boundary with soap set mime that
is unique when using DIME in MIME.

183

14.2 Retrieving a Collection of MIME Attachments (SwA)

MIME attachments are automatically parsed and stored in memory. After receiving a set of MIME
attachments, either at the client-side or the server-side, the list of MIME attachments can be
traversed to extract meta data and the attachment content. The first attachment in the collection
of MIME attachments always contains meta data about the SOAP message itself (because the
SOAP message was processed the attachment does not contain any useful data).

To traverse the list of MIME attachments in C, you use a loop similar to:

struct soap multipart *attachment;
for (attachment = soap.mime.list; attachment; attachment = attachment->next)
{

printf("MIME attachment:\n");
printf("Memory=%p\n", (*attachment).ptr);
printf("Size=%ul\n", (*attachment).size);
printf("Encoding=%d\n", (int)(*attachment).encoding);
printf("Type=%s\n", (*attachment).type?(*attachment).type:”null”);
printf("ID=%s\n", (*attachment).id?(*attachment).id:”null”);
printf("Location=%s\n", (*attachment).location?(*attachment).location:”null”);
printf("Description=%s\n", (*attachment).description?(*attachment).description:”null”);
}

C++ programmers can use an iterator instead, as in:

for (soap multipart::iterator attachment = soap.mime.begin(); attachment != soap.mime.end();
++attachment)
{

cout << ”MIME attachment:” << endl;
cout << ”Memory=” << (void*)(*attachment).ptr << endl;
cout << ”Size=” << (*attachment).size << endl;
cout << ”Encoding=” << (*attachment).encoding << endl;
cout << ”Type=” << ((*attachment).type?(*attachment).type:”null”) << endl;
cout << ”ID=” << ((*attachment).id?(*attachment).id:”null”) << endl;
cout << ”Location=” << ((*attachment).location?(*attachment).location:”null”) << endl;
cout << ”Description=” << ((*attachment).description?(*attachment).description:”null”) << endl;
}

Note: keep in mind that the first attachment is associated with the SOAP message and you may
want to ignore it.

A call to soap end removes all of the received MIME data. To preserve an attachment in memory,
use soap unlink on the ptr field of the soap multipart struct. Recall that the soap unlink function is
commonly used to prevent deallocation of deserialized data.

15 DIME Attachments

The gSOAP toolkit supports DIME attachments as per DIME specification, see http://msdn.microsoft.com/library/en-
us/dnglobspec/html/draft-nielsen-dime-02.txt

184

Applications developed with gSOAP can transmit binary DIME attachments with or without
streaming messages. Without streaming, all data is stored and retrieved in memory, which can
be prohibitive when transmitting large files on small devices. In contrast, with DIME streaming,
data handlers are used to pass the data to and from a resource, such as a file or device. With
DIME output streaming, raw binary data is send from a data source in chunks on the fly without
buffering the entire content to save memory. With DIME input streaming, raw binary data will be
passed to data handlers (callbacks).

15.1 Sending a Collection of DIME Attachments

The following functions can be used to explicitly set up a collection of DIME attachments for
transmission with a SOAP/XML message body. The attachments can be streamed, as described
in Section 15.4. Without streaming, each attachment must refer to a block of data in memory.

Function
void soap set dime(struct soap *soap)
This function must be called first to initialize DIME attachment send operations (receives are auto-
matic).
int soap set dime attachment(struct soap *soap, char *ptr, size t size, const char *type, const char
*id, unsigned short optype, const char *option)
This function adds a new attachment to the list of attachments, where ptr and size refer to the block
of memory that holds the attachment data (except when DIME streaming callback handlers are
used as described in Section 15.4. The type string parameter is the MIME type of the data. The
id string parameter is the content ID of the DIME attachment. The option string parameter holds
optional text (gSOAP supports DIME options, but it can send only one) and optype is a user-defined
option type (as per DIME option specification format). All parameter values are copied, except ptr.
The value SOAP OK is returned when the attachment was added. Otherwise a gSOAP error code
is returned.
void soap clr mime(struct soap *soap)
Disables DIME attachments, unless the serialized SOAP message contains attachments for trans-
mission.

These functions allow DIME attachments to be added without requiring message body references.
This is also referred to as the open DIME attachment style. The closed attachment style requires
all DIME attachments to be referenced from the SOAP message body with href (or similar) ref-
erences. For the closed style, gSOAP supports an automatic binary data serialization method, see
Section 15.3.

15.2 Retrieving a Collection of DIME Attachments

DIME attachments are automatically parsed and stored in memory (or passed to the streaming
handlers, when applicable). After receiving a set of DIME attachments, either at the client-side
or the server-side, the list of DIME attachments can be traversed to extract meta data and the
attachment content.

To traverse the list of DIME attachments in C, you use a loop similar to:

185

struct soap multipart *attachment;
for (attachment = soap.dime.list; attachment; attachment = attachment->next)
{

printf("DIME attachment:\n");
printf("Memory=%p\n", (*attachment).ptr);
printf("Size=%ul\n", (*attachment).size);
printf("Type=%s\n", (*attachment).type?(*attachment).type:”null”);
printf("ID=%s\n", (*attachment).id?(*attachment).id:”null”);
}

C++ programmers can use an iterator instead, as in:

for (soap multipart::iterator attachment = soap.dime.begin(); attachment != soap.dime.end(); ++at-
tachment)
{

cout << ”DIME attachment:” << endl;
cout << ”Memory=” << (void*)(*attachment).ptr << endl;
cout << ”Size=” << (*attachment).size << endl;
cout << ”Type=” << ((*attachment).type?(*attachment).type:”null”) << endl;
cout << ”ID=” << ((*attachment).id?(*attachment).id:”null”) << endl;
}

The options field is available as well. The options content is formatted according to the DIME
specification: the first two bytes are reserved for the option type, the next two bytes store the size
of the option data, followed by the (binary) option data.

A call to soap end removes all of the received DIME data. To preserve an attachment in memory,
use soap unlink on the ptr field of the soap multipart struct. Recall that the soap unlink function is
commonly used to prevent deallocation of deserialized data.

15.3 Serializing Binary Data in DIME

Binary data stored in extended xsd:base64Binary and xsd:hexBinary types can be serialized and
deserialized as DIME attachments. These attachments will be transmitted prior to the sequence of
secondary DIME attachments defined by the user with soap set dime attachment as explained in the
previous section. The serialization process is automated and DIME attachments will be send even
when soap set dime or soap set dime attachment are not used.

The xsd:base64Binary XSD type is defined in gSOAP as a struct or class by

struct xsd base64Binary
{

unsigned char * ptr; // pointer to raw binary data
int size; // size of the block of data
};

To enable serialization of the data in DIME, we extend this type with three additional fields:

struct xsd base64Binary
{

186

unsigned char * ptr;
int size;
char *id;
char *type;
char *options;
};

The three additional fields consist of an id field for attachment referencing (typically a content id
(CID) or UUID), a type field to specify the MIME type of the binary data, and an options field to
piggy-back additional information with a DIME attachment. The order of the declaration of the
fields is significant. In addition, no other fields or methods may be declared before any of these
fields in the struct/class, but additional fields and methods may appear after the field declarations.
An extended xsd hexBinary declaration is similar.

The id and type fields contain text. The set the DIME-specific options field, you can use the
soap dime option function:

char *soap dime option(struct soap *soap, unsigned short type, const char *option)

returns a string with this encoding. For example

struct xsd base64Binary image;
image. ptr = ...;
image. size = ...;
image.id = "uuid:09233523-345b-4351-b623-5dsf35sgs5d6";
image.type = "image/jpeg";
image.options = soap dime option(soap, 0, "My wedding picture");

When either the id or type field values are non-NULL at run time, the data will be serialized as
a DIME attachment. The SOAP/XML message refers to the attachments using href attributes.
This generally works will with SOAP RPC, because href attributes are permitted. However, with
document/literal style the referencing mechanism must be explicitly defined in the schema of the
binary type. The gSOAP declaration of an extended binary type is

struct ns myBinaryDataType
{

unsigned char * ptr;
int size;
char *id;
char *type;
char *options;
};

C++ programmers can use inheritance instead of textual extension required in C, as in

class xsd base64Binary
{

unsigned char * ptr;
int size;

187

};
class ns myBinaryDataType : xsd base64Binary
{

char *id;
char *type;
char *options;
};

This defines an extension of xsd:base64Binary, such that the data can be serialized as DIME
attachments using href attributes for referencing. When a different attribute name is in fact used,
it must be explicitly defined:

//gsoap WSref schema import: http://schemas.xmlsoap.org/ws/2002/04/reference/
struct ns myBinaryDataType
{

unsigned char * ptr;
int size;
char *id;
char *type;
char *options;
@char *WSref location;
};

The example above uses the location attribute defined in the content reference schema, as defined in
one of the vendor’s specific WSDL extensions for DIME (http://www.gotdotnet.com/team/xml wsspecs/dime/WSDL-
Extension-for-DIME.htm).

When receiving DIME attachments, the DIME meta data and binary data content is stored in
binary data types only when the XML parts of the message uses href attributes to refer to these
attachments. The gSOAP toolkit may support automatic (de)serialization with other user-defined
(or WSDL-defined) attributes in future releases.

Messages may contain binary data that references external resources not provided as attachments.
In that case, the ptr field is NULL and the id field refers to the external data source.

The dime id format attribute of the current gSOAP run-time context can be set to the default format
of DIME id fields. The format string MUST contain a %d format specifier (or any other int-based
format specifier). The value of this specifier is a non-negative integer, with zero being the value of
the DIME attachment id for the SOAP message. For example,

struct soap soap;
soap init(&soap);
soap.dime id format = "uuid:09233523-345b-4351-b623-5dsf35sgs5d6-%x";

As a result, all attachments with a NULL id field will use a gSOAP-generated id value based on
the format string.

Caution: Care must be taken not to introduce duplicate content id values, when assigning content
id values to the id fields of DIME extended binary data types. Content ids must be unique.

188

15.4 Streaming DIME

Streaming DIME is achieved with callback functions to fetch and store data during transmission.
Three function callbacks for streaming DIME output and three callbacks for streaming DIME input
are available.

189

Callback (function pointer)
void *(*soap.fdimereadopen)(struct soap *soap, void *handle, const char *id, const char *type, const
char *options)
Called by the gSOAP run-time DIME attachment sender to start reading from a (binary) data
source for outbound transmission. The content will be read from the application’s data source in
chunks using the fdimeread callback and streamed into the SOAP/XML/DIME output stream. The
handle contains the value of the ptr field of an attachment struct/class, which could be a pointer
to specific information such as a file descriptor or a pointer to a string to be passed to this callback.
Both ptr and size fields should have been set by the application prior to the serialization of the
content. The id, type, and options arguments are the DIME id, type, and options, respectively. The
callback should return handle, or another pointer value which will be passed as a handle to fdimeread
and fdimereadclose. The callback should return NULL and set soap->error when an error occurred.
The callback should return NULL (and not set soap->error) when this particular DIME attachment
is not to be streamed.
size t (*soap.fdimeread)(struct soap *soap, void *handle, char *buf, size t len)
Called by the gSOAP run-time DIME attachment sender to read more data from a (binary) data
source for streaming into the output stream. The handle contains the value returned by the fdimeread-
open callback. The buf argument is the buffer of length len into which a chunk of data should be
stored. The actual amount of data stored in the buffer may be less than len and this amount
should be returned by the application. A return value of 0 indicates an error (the callback may set
soap->errnum to errno). The size field of the attachment struct/class should have been set by the
application prior to the serialization of the content. The value of size indicates the total size of
the content to be transmitted. When the size is zero then DIME chunked transfers can be used
under certain circumstances to stream content without prior determination of attachment size, see
Section 15.5 below.
void(*soap.fdimereadclose)(struct soap *soap, void *handle)
Called by the gSOAP run-time DIME attachment sender at the end of the streaming process to
close the data source. The handle contains the value returned by the fdimereadopen callback. The
fdimewriteclose callback is called after successfully transmitting the data or when an error occurred.
void *(*soap.fdimewriteopen)(struct soap *soap, const char *id, const char *type, const char *op-
tions)
Called by the gSOAP run-time DIME attachment receiver to start writing an inbound DIME at-
tachment to an application’s data store. The content is streamed into an application data store
through multiple fdimewrite calls from the gSOAP attachment receiver. The id, type, and options
arguments are the DIME id, type, and options respectively. The callback should return a handle
which is passed to the fdimewrite and fdimewriteclose callbacks. The ptr field of the attachment
struct/class is set to the value of this handle. The size field is set to the total size of the attachment
after receiving the entire content. The size is unknown in advance because DIME attachments may
be chunked.
int (*soap.fdimewrite)(struct soap *soap, void *handle, const char *buf, size t len)
Called by the gSOAP run-time DIME attachment receiver to write part of an inbound DIME attach-
ment to an application’s data store. The handle contains the value returned by the fdimewriteopen
callback. The buf argument contains the data of length len. The callback should return a gSOAP
error code (e.g. SOAP OK when no error occurred).
void(*soap.fdimewriteclose)(struct soap *soap, void *handle)
Called by the gSOAP run-time DIME attachment receiver at the end of the streaming process to
close the data store. The fdimewriteclose callback is called after successfully receiving the data or
when an error occurred. The handle contains the value returned by the fdimewriteopen callback.

In addition, a void*user field in the struct soap data structure is available to pass user-defined data
to the callbacks. This way, you can set soap.user to point to application data that the callbacks

190

need such as a file name for example.

The following example illustrates the client-side initialization of an image attachment struct to
stream a file into a DIME attachment:

int main()
{

struct soap soap;
struct xsd base64Binary image;
FILE *fd;
struct stat sb;
soap init(&soap);
if (!fstat(fileno(fd), &sb) && sb.st size > 0)
{ // because we can get the length of the file, we can stream it

soap.fdimereadopen = dime read open;
soap.fdimereadclose = dime read close;
soap.fdimeread = dime read;
image. ptr = (unsigned char*)fd; // must set to non-NULL (this is our fd handle which we

need in the callbacks)
image. size = sb.st size; // must set size

}
else
{ // don’t know the size, so buffer it

size t i;
int c;
image. ptr = (unsigned char*)soap malloc(&soap, MAX FILE SIZE);
for (i = 0; i < MAX FILE SIZE; i++)
{

if ((c = fgetc(fd)) == EOF)
break;

image. ptr[i] = c;
}
fclose(fd);
image. size = i;

}
image.type = ”image/jpeg”;
image.options = soap dime option(&soap, 0, ”My picture”);
soap call ns method(&soap, ...);
...
}
void *dime read open(struct soap *soap, void *handle, const char *id, const char *type, const
char *options)
{ return handle;
}
void dime read close(struct soap *soap, void *handle)
{ fclose((FILE*)handle);
}
size t dime read(struct soap *soap, void *handle, char *buf, size t len)
{ return fread(buf, 1, len, (FILE*)handle);
}

The following example illustrates the streaming of a DIME attachment into a file by a client:

191

int main()
{ struct soap soap;

soap init(&soap);
soap.fdimewriteopen = dime write open;
soap.fdimewriteclose = dime write close;
soap.fdimewrite = dime write;
soap call ns method(&soap, ...);
...
}
void *dime write open(struct soap *soap, const char *id, const char *type, const char *options)
{

FILE *handle = fopen(”somefile”, ”wb”);
if (!handle)
{

soap->error = SOAP EOF;
soap->errnum = errno; // get reason

}
return (void*)handle;
}
void dime write close(struct soap *soap, void *handle)
{ fclose((FILE*)handle);
}
int dime write(struct soap *soap, void *handle, const char *buf, size t len)
{

size t nwritten;
while (len)
{

nwritten = fwrite(buf, 1, len, (FILE*)handle);
if (!nwritten)
{

soap->errnum = errno; // get reason
return SOAP EOF;

}
len -= nwritten;
buf += nwritten;

}
return SOAP OK;
}

Note that compression can be used with DIME to compress the entire message. However, com-
pression requires buffering to determine the HTTP content length header, which cancels the
benefits of streaming DIME. To avoid this, you should use chunked HTTP (with the output-
mode SOAP IO CHUNK flag) with compression and streaming DIME. At the server side, when
you set SOAP IO CHUNK before calling soap serve, gSOAP will automatically revert to buffering
(SOAP IO STORE flag is set). You can check this flag with (soap-¿omode & SOAP IO) == SOAP IO CHUNK

to see if the client accepts chunking. More information about streaming chunked DIME can be
found in Section 15.5.

Caution: The options field is a DIME-specific data structure, consisting of a 4 byte header containing
the option type info (hi byte, lo byte), option string length (hi byte, lo byte), followed by a non-’\0’
terminated string. The gSOAP DIME handler recognizes one option at most.

192

15.5 Streaming Chunked DIME

gSOAP automatically handles inbound chunked DIME attachments (streaming or non-streaming).
To transmit outbound DIME attachments, the attachment sizes MUST be determined in advance
to calculate HTTP message length required to stream DIME over HTTP. However, gSOAP also
supports the transmission of outbound chunked DIME attachments without prior determination
of DIME attachment sizes when certain conditions are met. These conditions require either non-
HTTP transport (use the output-mode SOAP ENC XML flag), or chunked HTTP transport (use the
output-mode SOAP IO CHUNK flag). You can also use the SOAP IO STORE flag (which is also used
automatically with compression to determine the HTTP content length header) but that cancels
the benefits of streaming DIME.

To stream chunked DIME, set the size field of an attachment to zero and enable HTTP chunking.
The DIME fdimeread callback then fetches data in chunks and it is important to fill the entire buffer
unless the end of the data has been reached and the last chunk is to be send. That is, fdimeread

should return the value of the last len parameter and fill the entire buffer buf for all chunks except
the last.

15.6 WSDL Bindings for DIME Attachments

The wsdl2h WSDL parser recognizes DIME attachments and produces an annotated header file.
Both open and closed layouts are supported for transmitting DIME attachments. For closed for-
mats, all DIME attachments must be referenced from the SOAP message, e.g. using hrefs with
SOAP encoding and using the application-specific reference attribute included in the base64Binary

struct/class for doc/lit.

The gSOAP compiler soapcpp2 does not produce a WSDL with DIME extensions. DIME is an older
binary format that has no WSDL protocol support, unlike MIME and MTOM.

16 MTOM Attachments

MTOM (Message Transmission Optimization Mechanism) is a relatively new format for transmit-
ting attachments with SOAP messages (see http://www.w3.org/TR/soap12-mtom). MTOM is a
W3C working draft as of this writing. MTOM attachments are essentially MIME attachments with
standardized mechanisms for cross referencing attachments from the SOAP body, which is absent
in (plain) MIME attachments and optional with DIME attachments.

Unlike the name suggests, the speed by which attached data is transmitted is not increased com-
pared to MIME, DIME, or even XML encoded base64 data (at least the performance differences
in gSOAP will be small). The advantage of the format is the standardized attachment reference
mechanism, which should improve interoperability.

The MTOM specification mandates SOAP 1.2 and the use of the XOP namespace. The XOP
Include element xop:Include is used to reference attachment(s) from the SOAP message body.

Because references from within the SOAP message body to attachments are mandatory with
MTOM, the implementation of the serialization and deserialization of MTOM MIME attachments

193

in gSOAP uses the extended binary type comparable to DIME support in gSOAP. This binary type
is predefined in the import/xop.h file:

//gsoap xop schema import: http://www.w3.org/2004/08/xop/include
struct xop Include
{

unsigned char * ptr;
int size;
char *id;
char *type;
char *options;
};
typedef struct xop Include xop Include;

The additional id, type, and option fields enable MTOM attachments for the data pointed to by ptr

of size size. The process for sending and receiving MTOM XOP attachments is fully automated.
The id field references the attachment (typically a content id CID or UUID). When set to NULL,
gSOAP assigns a unique CID. The type field specifies the required MIME type of the binary data,
and the optional options field can be used to piggy-back descriptive text with an attachment. The
order of the declaration of the fields is significant.

You can explicitly import the xop.h in your header file to use the MTOM attachments in your
service, for example:

#import ”import/soap12.h”
/* alternatively, without the import above, use:
//gsoap SOAP-ENV schema namespace: http://www.w3.org/2003/05/soap-envelope
//gsoap SOAP-ENC schema namespace: http://www.w3.org/2003/05/soap-encoding
/
#import ”import/xop.h”
#import ”import/xmime5.h”

//gsoap x schema namespace: http://my.first.mtom.net
struct x myData
{

xop Include xop Include; // attachment
@char *xmime5 contentType; // and its contentType
};
int x myMTOMtest(struct x myData *in, struct x myData *out);

As you can see, there is really no difference between the specification of MTOM and DIME at-
tachments in a gSOAP header file. Except that you MUST use SOAP 1.2 and the xop Include

element.

When an instance of x myDataType is serialized and either or both the id and type fields are non-
NULL, the data is transmitted as MTOM MIME attachment if the SOAP ENC MTOM flag is set in
the gSOAP’s soap struct context:

struct soap *soap = soap new1(SOAP ENC MTOM);

194

Without this flag, the attachments will be transmitted in DIME format (Section 15). If your current
clients and services are based on non-streaming DIME attachments using the SOAP body reference
mechanism (thus, without using the soap set dime attachment function) or plain base64 binary XML
data elements, it is very easy to adopt MTOM by renaming the binary types to xop Include and
using the SOAP ENC MTOM flag with the SOAP 1.2 namespace.

16.1 Generating MultipartRelated MIME Attachment Bindings in WSDL

To generate multipartRelated bindings in the WSDL file, use the //gsoap ... service method-mime-type

directive (see also Section 19.2. The directive can be repeated for each attachment you want to
associate with a method’s request and response messages.

For example:

#import ”import/soap12.h”
#import ”import/xop.h”
#import ”import/xmime5.h”

//gsoap x schema namespace: http://my.first.mtom.net
struct x myData
{

xop Include xop Include; // attachment
@char *xmime5 contentType; // and its contentType
};
//gsoap x service method-mime-type: myMTOMtest text/xml
int x myMTOMtest(struct x myData *in, struct x myData *out);

The //gsoap x service method-mime-type directive indicates that this operation accepts text/xml MIME
attachments. See the SOAP-with-Attachment specification for the MIME types to use (for example,
/ is a wildcard). If the operation has more than one attachment, just repeat this directive for
each attachment you want to bind to the operation.

To bind attachments only to the request message of an operation, use //gsoap x service method-input-

mime-type. Similarly, to bind attachments only to the response message of an operation, use //gsoap

x service method-ouput-mime-type.

The wsdl2h WSDL parser recognizes MIME attachments and produces an annotated header file.
However, the ordering of MIME parts in the multipartRelated elements is not reflected in the
header file. Application developers should adhere the standards and ensure that multipart/related
attachments are transmitted in compliance with the WSDL operation declarations.

16.2 Sending and Receiving MTOM Attachments

A receiver must be informed to recognize MTOM attachments by setting the SOAP ENC MTOM flag
of the gSOAP context. Otherwise, the regular MIME attachment mechanism (SwA) will be used
to store attachments.

When using wsdl2h to build clients and/or services, you should use the typemap.dat file included
in the distribution package. The typemap.dat file defines the XOP namespace and XML MIME

195

namespaces as imported namespaces:

xop = <http://www.w3.org/2004/08/xop/include>
xmime5 = <http://www.w3.org/2005/05/xmlmime>
xmime4 = <http://www.w3.org/2004/11/xmlmime>

The wsdl2h tool uses the typemap.dat file (see also option -t) to convert WSDL into a gSOAP header
file. In this case we don’t want the wsdl2h tool to read the XOP schema and translate it, since we
have a pre-defined xop Include element to handle XOP for MTOM. This xop Include element is
defined in xop.h. Therefore, the bindings shown above will not translate the XOP and XML MIME
schemas to code, but generates #import statements instead:

#import ”xop.h”
#import ”xmime5.h”

The #import statements are only added for those namespaces that are actually used by the service.

Let’s take a look at an example. The wsdl2h importer generates a header file with #import ”xop.h”

from a WSDL that references XOP, for example:

#import ”xop.h”
#import ”xmime5.h”
struct ns Data
{

xop Include xop Include;
@char *xmime5 contentType;
};

Suppose the WSDL defines an operation:

int ns echoData(struct ns Data *in, struct ns Data *out);

After generating the stubs/proxies with the soapcpp2 compiler, we can invoke the stub at the client
side with:

struct soap *soap = soap new1(SOAP ENC MTOM);
struct ns Data data;
data.xop Include. ptr = (unsigned char*)”Hello world!”;
data.xop Include. size = 20;
data.xop Include.id = NULL; // CID automatically generated by gSOAP engine
data.xop Include.type = ”text/html”; // MIME type
data.xop Include.options = NULL; // no descriptive info added
data.xmime5 contentType = ”text/html”; // MIME type
if (soap call ns echoData(soap, endpoint, action, &data, &data)) soap print fault(soap, stderr);
else

printf(”Got data\n”);
soap destroy(soap); // remove deserialized class instances
soap end(soap); // remove temporary and deserialized data
soap free(soap); // detach and free context

196

Note that the xop Include.type field must be set to transmit MTOM attachments, otherwise plain
base64 XML will be used.

At the server side, we show an example of an operation handler that just copies the input data to
output:

int ns echoData(struct soap *soap, struct ns Data *in, struct ns data *out)
{

*out = *in;
return SOAP OK;
}

The server must use the SOAP ENC MTOM flag to initialize the soap struct to receive and send
MTOM attachments.

16.3 Streaming MTOM/MIME

Streaming MTOM/MIME is achieved with callback functions to fetch and store data during trans-
mission. Three function callbacks for streaming MTOM/MIME output and three callbacks for
streaming MTOM/MIME input are available.

197

Callback (function pointer)
void *(*soap.fmimereadopen)(struct soap *soap, void *handle, const char *id, const char *type, const
char *description)
Called by the gSOAP run-time MTOM/MIME attachment sender to start reading from a (binary)
data source for outbound transmission. The content will be read from the application’s data source
in chunks using the fmimeread callback and streamed into the SOAP/XML/MTOM/MIME output
stream. The handle contains the value of the ptr field of an attachment struct/class, which could
be a pointer to specific information such as a file descriptor or a pointer to a string to be passed
to this callback. Both ptr and size fields should have been set by the application prior to the
serialization of the content. The id, type, and description arguments are the MTOM/MIME id, type,
and description, respectively. The callback should return handle, or another pointer value which will
be passed as a handle to fmimeread and fmimereadclose. The callback should return NULL and set
soap->error when an error occurred. The callback should return NULL (and not set soap->error)
when this particular MTOM/MIME attachment is not to be streamed.
size t (*soap.fmimeread)(struct soap *soap, void *handle, char *buf, size t len)
Called by the gSOAP run-time MTOM/MIME attachment sender to read more data from a (binary)
data source for streaming into the output stream. The handle contains the value returned by the
fmimereadopen callback. The buf argument is the buffer of length len into which a chunk of data
should be stored. The actual amount of data stored in the buffer may be less than len and this
amount should be returned by the application. A return value of 0 indicates an error (the callback
may set soap->errnum to errno). The size field of the attachment struct/class should have been
set by the application prior to the serialization of the content. The value of size indicates the
total size of the content to be transmitted. When the size is zero then MTOM/MIME chunked
transfers can be used under certain circumstances to stream content without prior determination of
attachment size, see Section 16.5 below.
void(*soap.fmimereadclose)(struct soap *soap, void *handle)
Called by the gSOAP run-time MTOM/MIME attachment sender at the end of the streaming process
to close the data source. The handle contains the value returned by the fmimereadopen callback. The
fmimewriteclose callback is called after successfully transmitting the data or when an error occurred.
void *(*soap.fmimewriteopen)(struct soap *soap, void *handle, const char *id, const char *type,
const char *description, enum soap mime encoding encoding)
Called by the gSOAP run-time MTOM/MIME attachment receiver to start writing an in-
bound MTOM/MIME attachment to an application’s data store. The content is streamed
into an application data store through multiple fmimewrite calls from the gSOAP attachment
receiver. The handle argument is normally NULL, unless soap get mime attachment is used
that passes the handle to the callback, see Section 16.4. The id, type, and description argu-
ments are the MTOM/MIME id, type, and description respectively. The encoding enumera-
tion value indicates the MIME content transfer encoding, which is one of SOAP MIME NONE,
SOAP MIME 7BIT, SOAP MIME 8BIT, SOAP MIME BINARY, SOAP MIME QUOTED PRINTABLE,
SOAP MIME BASE64, SOAP MIME IETF TOKEN, SOAP MIME X TOKEN. Content decoding may
have to be considered by the application based on this value. The callback should return a non-
NULL handle which is passed to the fmimewrite and fmimewriteclose callbacks. The ptr field of
the attachment struct/class is set to the value of this handle. The size field is set to the total
size of the attachment after receiving the entire content. The size is unknown in advance because
MTOM/MIME attachments may be chunked.
int (*soap.fmimewrite)(struct soap *soap, void *handle, const char *buf, size t len)
Called by the gSOAP run-time MTOM/MIME attachment receiver to write part of an inbound
MTOM/MIME attachment to an application’s data store. The handle contains the value returned
by the fmimewriteopen callback. The buf argument contains the data of length len. The callback
should return a gSOAP error code (e.g. SOAP OK when no error occurred).
void(*soap.fmimewriteclose)(struct soap *soap, void *handle)
Called by the gSOAP run-time MTOM/MIME attachment receiver at the end of the streaming
process to close the data store. The fmimewriteclose callback is called after successfully receiving
the data or when an error occurred. The handle contains the value returned by the fmimewriteopen
callback.

198

In addition, a void*user field in the struct soap data structure is available to pass user-defined data
to the callbacks. This way, you can set soap.user to point to application data that the callbacks
need such as a file name for example.

The following example illustrates the client-side initialization of an image attachment struct to
stream a file into a MTOM attachment without HTTP chunking (HTTP streaming chunked MTOM
transfer is presented in Section 16.5):

int main()
{

struct soap soap;
struct xsd base64Binary image;
FILE *fd;
struct stat sb;
soap init1(&soap, SOAP ENC MTOM); // mandatory to enable MTOM
if (!fstat(fileno(fd), &sb) && sb.st size > 0)
{ // because we can get the length of the file, we can stream it without chunking

soap.fmimereadopen = mime read open;
soap.fmimereadclose = mime read close;
soap.fmimeread = mime read;
image. ptr = (unsigned char*)fd; // must set to non-NULL (this is our fd handle which we

need in the callbacks)
image. size = sb.st size; // must set size

}
else
{ // don’t know the size, so buffer it

size t i;
int c;
image. ptr = (unsigned char*)soap malloc(&soap, MAX FILE SIZE);
for (i = 0; i < MAX FILE SIZE; i++)
{

if ((c = fgetc(fd)) == EOF)
break;

image. ptr[i] = c;
}
fclose(fd);
image. size = i;

}
image.type = ”image/jpeg”; // MIME type
image.options = ”This is my picture”; // description of object
soap call ns method(&soap, ...);
...
}
void *mime read open(struct soap *soap, void *handle, const char *id, const char *type, const
char *description)
{ return handle;
}
void mime read close(struct soap *soap, void *handle)
{ fclose((FILE*)handle);
}
size t mime read(struct soap *soap, void *handle, char *buf, size t len)
{ return fread(buf, 1, len, (FILE*)handle);

199

}

The following example illustrates the streaming of a MTOM/MIME attachment into a file by a
client:

int main()
{ struct soap soap;

soap init(&soap);
soap.fmimewriteopen = mime write open;
soap.fmimewriteclose = mime write close;
soap.fmimewrite = mime write;
soap call ns method(&soap, ...);
...
}
void *mime write open(struct soap *soap, const char *id, const char *type, const char *descrip-
tion, enum soap mime encoding encoding)
{

FILE *handle = fopen(”somefile”, ”wb”);
// We ignore the MIME content transfer encoding here, but should check
if (!handle)
{

soap->error = SOAP EOF;
soap->errnum = errno; // get reason

}
return (void*)handle;
}
void mime write close(struct soap *soap, void *handle)
{ fclose((FILE*)handle);
}
int mime write(struct soap *soap, void *handle, const char *buf, size t len)
{

size t nwritten;
while (len)
{

nwritten = fwrite(buf, 1, len, (FILE*)handle);
if (!nwritten)
{

soap->errnum = errno; // get reason
return SOAP EOF;

}
len -= nwritten;
buf += nwritten;

}
return SOAP OK;
}

Note that compression can be used with MTOM/MIME to compress the entire message. However,
compression requires buffering to determine the HTTP content length header, which cancels the
benefits of streaming MTOM/MIME. To avoid this, you should use chunked HTTP (with the
output-mode SOAP IO CHUNK flag) with compression and streaming MTOM/MIME. At the server
side, when you set SOAP IO CHUNK before calling soap serve, gSOAP will automatically revert to

200

buffering (SOAP IO STORE flag is set). You can check this flag with (soap-¿omode & SOAP IO) ==

SOAP IO CHUNK to see if the client accepts chunking. More information about streaming chunked
MTOM/MIME can be found in Section 16.5.

16.4 Redirecting Inbound MTOM/MIME Streams Based on SOAP Body Con-
tent

When it is preferable or required to redirect inbound MTOM/MIME attachment streams based on
SOAP message body content, where for example the names of the resources are listed in the SOAP
message body, an alternative mechanism must be used. This mechanism can be used both at the
client and server side.

Because the routing of the streams is accomplished with explicit function calls, this method should
only be used when required and should not be considered optional. That is, when you enable this
method, you MUST check for pending MTOM/MIME attachments and handle them appropriately.
This is true even when you don’t expect MTOM/MIME attachments in the payload, because the
peer may trick you by sending attachments anyway and you should be prepared to accept or reject
them.

The explicit MTOM/MIME streaming mechanism consists of three API functions:

Function
void soap post check mime attachments(struct soap *soap)
Enables post-message body inbound streaming MTOM/MIME attachments. The presence of at-
tachments must be explicitly checked using the function below.
int soap check mime attachments(struct soap *soap)
Should be called after a client-side call (e.g. soap call ns method) to check the presence of attach-
ments. Returns 1 (true) when attachments are present. If present, each attachment MUST be
processed with the function below.
struct soap multipart *soap get mime attachment(struct soap *soap, void *handle)
Parses an attachment and invokes the MIME callbacks (when set). The handle parameter is passed
to fmimewriteopen. The handle may contain any data that is extracted from the SOAP message
body to guide the redirection of the stream in the callbacks. The return value is a struct with a
char *ptr field that contains the handle value returned by the fmimewriteopen callback, and char *id,
char *type, and char *description fields with the optional MIME id, type, and description info.

Example client-side code in C:

struct soap *soap = soap new1(SOAP ENC MTOM);
soap post check mime attachments(soap);
...
if (soap call ns myMethod(soap, ...))

soap print fault(soap, stderr); // an error occurred
else
{

if (soap check mime attachments(soap)) { // attachments are present, channel is still open
{

do
{

201

... // get data ’handle’ from SOAP response and pass to callbacks

... // set the fmime callbacks, if needed
struct soap multipart *content = soap get mime attachment(soap, (void*)handle);
printf("Received attachment with id=%s and type=%s\n", content->id?content->id:””,

content->type?content->type:””);
} while (content);
if (soap->error)

soap print fault(soap, stderr);
}

}
}
...
soap destroy(soap);
soap end(soap);
soap free(soap); // detach and free context

The server-side service operations are implemented as usual, but with additional checks for MTOM/MIME
attachments:

struct soap *soap = soap new1(SOAP ENC MTOM);
soap post check mime attachments(soap);
...
soap serve(soap);
...
int ns myMethod(struct soap *soap, ...)
{ ... // server-side processing logic

if (soap check mime attachments(soap)) { // attachments are present, channel is still open
{

do
{

... // get data ’handle’ from SOAP request and pass to callbacks

... // set the fmime callbacks, if needed
struct soap multipart *content = soap get mime attachment(soap, (void*)handle);
printf("Received attachment with id=%s and type=%s\n", content->id?content->id:””,

content->type?content->type:””);
} while (content);
if (soap->error)

return soap->error;
}

}
... // server-side processing logic
return SOAP OK;
}

16.5 Streaming Chunked MTOM/MIME

gSOAP automatically handles inbound chunked MTOM/MIME attachments (streaming or non-
streaming). To transmit outbound MTOM/MIME attachments, the attachment sizes MUST be
determined in advance to calculate HTTP message length required to stream MTOM/MIME over

202

HTTP. However, gSOAP also supports the transmission of outbound chunked MTOM/MIME at-
tachments without prior determination of MTOM/MIME attachment sizes when certain conditions
are met. These conditions require either non-HTTP transport (use the output-mode SOAP ENC XML

flag), or chunked HTTP transport (use the output-mode SOAP IO CHUNK flag). You can also use
the SOAP IO STORE flag (which is also used automatically with compression to determine the HTTP
content length header) but that cancels the benefits of streaming MTOM/MIME.

To stream chunked MTOM/MIME, set the size field of an attachment to zero and enable HTTP
chunking. The MTOM/MIME fmimeread callback then fetches data in chunks of any size between
1 and the value of the len argument. The fmimeread callback should return 0 upon reaching the end
of the data stream.

17 XML Validation

The gSOAP XML parser applies basic rules to validate content. Constraints are not automatically
verified unless explicitly set using flags. This helps to avoid interoperability problems with toolkits
that do not strictly enforce validation rules. In addition, we cannot always use strict validation for
SOAP RPC encoded messages, since SOAP RPC encoding adopts a very loose serialization format.

Validation constraints are enabled with the SOAP XML STRICT input mode flag set, e.g. with
soap set imode(soap, SOAP XML STRICT) or soap new(SOAP XML STRICT), see Section 9.12 for the
complete list of flags.

17.1 Occurrence Constraints

17.1.1 Default Values

Default values can be defined for optional elements and attributes, which means that the default
value will be used when the element or attribute value is not present in the parsed XML. See also
Section 7.5.7 and examples in subsequent subsections below.

Default values must be primitive types, integer, float, string, etc. Default values can be specified
for struct and class members, as shown in the example below:

struct ns MyRecord
{

int n = 5; // optional element with default value 5
char *name = ”none”; // optional element with default value ”none”
@enum ns color { RED, WHITE, BLUE } color = RED; // optional attribute with default value

RED
};

Upon deserialization of absent data, these members will be set accordingly. When classes are
instantiated with soap new ClassName the instance will be initialized with default values.

203

17.1.2 Elements with minOccurs and maxOccurs Restrictions

To force the validation of minOccurs and maxOccurs contraints the SOAP XML STRICT input mode
flag must be set. The minOccurs and maxOccurs constraints are specified for fields of a struct and
members of a class in a header file using the following syntax:

Type fieldname [minOccurs[:maxOccurs]] [= value]

The minOccurs and maxOccurs values must be integer literals. A default value can be provided.
When minOccurs is not specified, it is assumed to be zero.

For example

struct ns MyRecord
{

int n = 5; // element with default value 5, minOccurs=0, maxOccurs=1
int m 1; // element with minOccurs=1
int size 0:10; // sequence ¡item¿ with minOccurs=0, maxOccurs=10
int *item;
std::vector<double> nums 2; // sequence ¡nums¿ with minOccurs=2, maxOccurs=unbounded
};
struct arrayOfint
{

int * ptr 1:100; // minOccurs=1, maxOccurs=100
int size;
};

Pointer-based struct fields and class members are allowed to be nillable when minOccurs is zero.

17.1.3 Required and Prohibited Attributes

Similar to the minOccurs and maxOccurs annotations defined in the previous section, attributes in
a struct or class can be annotated with occurrence constraints to make them optional (0), required
(1), or prohibited (0:0). Default values can be assigned to optional attributes.

For example

struct ns MyRecord
{

@int m 1; // required attribute (occurs at least once)
@int n = 5; // optional attribute with default value 5
@int o 0; // optional attribute (may or may not occur)
@int p 0:0; // prohibited attribute
};

Remember to set the SOAP XML STRICT input mode flag to enable the validation of attribute
occurrence constraints.

204

17.2 Value Constraints

17.2.1 Data Length Restrictions

A schema simpleType is defined with a typedef by taking a base primitive to defined a derived
simpleType. For example:

typedef int time seconds;

This defines the following schema type in time.xsd:

<simpleType name="seconds">
<restriction base="xsd:int"/>

</simpleType>

A complexType with simpleContent is defined with a wrapper struct/class:

struct time date
{

char * item; // some custom format date (restriction of string)
@enum time zone { EST, GMT, ... } zone;
}

This defines the following schema type in time.xsd:

<complexType name="date">
<simpleContent>
<extension base="xsd:string"/>

</simpleContent>
<attribute name="zone" type="time:zone" use="optional"/>

</complexType> <simpleType name="zone">
<restriction base="xsd:string">
<enumeration value="EST"/>
<enumeration value="GMT"/>
...

</restriction>
</simpleType>

Data value length constraints of simpleTypes and complexTypes with simpleContent are defined
as follows.

typedef char *ns string256 0:256; // simpleType restriction of string with max length 256 char-
acters
typedef char *ns string10 10:10; // simpleType restriction of string with length of 10 characters
typedef std::string *ns string8 8; // simpleType restriction of string with at least 8 characters
struct ns data // simpleContent wrapper
{

char * item :256; // simpleContent with at most 256 characters
@char *name 1; // required name attribute
};

205

struct time date // simpleContent wrapper
{

char * item :100;
@enum time zone { EST, GMT, ... } zone = GMT;
}

Remember to set the SOAP XML STRICT input mode flag to enable the validation of value length
constraints.

17.2.2 Value Range Restrictions

Similar to data length constraints for string-based data, integer data value range constraints of
numeric simpleTypes and complexTypes with simpleContent are defined as follows.

typedef int ns int10 0:10; // simpleType restriction of int 0..10
typedef LONG64 ns long -1000000:1000000; // simpleType restriction of long64 -1000000..1000000
typedef float ns float100 -100:100; // simpleType restriction of float -100..100
struct ns data // simpleContent wrapper
{

int item 0:10; // simpleContent range 0..10
@char *name 1; // required name attribute
};

Currently the value bounds must be integer valued. Therefore, floating point ranges are limited to
integer bounds. This may change in future releases.

17.2.3 Pattern Restrictions

Patterns can be defined for simpleType content. However, patterns are currently not enforced in
the validation process though possibly in future releases.

To associate a pattern with a simpleType, you can define a simpleType with a typedef and a pattern
string:

typedef int time second ”[1-5]?[0-9]—60”;

This defines the following schema type in time.xsd:

<simpleType name="second">
<restriction base="xsd:int">
<pattern value="[1-5]?[0-9]|60"/>

</restriction base="xsd:int"/>
</simpleType>

The pattern string MUST contain a valid regular expression.

206

17.3 Element and Attribute Qualified/Unqualified Forms

Struct, class, and union members represent elements and attributes that are automatically qualified
or unqualified depending on the schema element and attribute default forms. The gSOAP engine
always validates the prefixes of elements and attributes. When a namespace mismatch occurs, the
element or attribute is not consumed which can lead to a validation error (unless the complexType
is extensible or when SOAP XML STRICT is turned off).

See Section 10.3 for details on the the struct/class/union member identifier translation rules. Con-
sider for example:

//gsoap ns schema elementForm: qualified
//gsoap ns schema attributeForm: unqualified
struct ns record
{

@char * type;
char * name;
};

Here, the ns record struct is serialized with qualified element name and unqualified attribute type:

<ns:record type="...">
<ns:name>...</ns:name>

</ns:record>

The “colon notation” for struct/class/union member field names is used to override element and
attribute qualified or unqualified forms. To override the form for individual members that represent
elements and attributes, use a namespace prefix and colon with the member name:

//gsoap ns schema elementForm: qualified
//gsoap ns schema attributeForm: unqualified
struct ns record
{

@char * ns:type;
char * :name;
};

where name is unqualified and type is qualified:

<ns:record ns:type="...">
<name>...</name>

</ns:record>

The colon notation is a syntactic notation used only in the gSOAP header file syntax, it is not
translated to the C/C++ output.

The colon notation does not avoid name clashes between members. For example:

struct x record
{

207

@char * name;
char * x:name;
};

results in a redefinition error, since both members have the same name. To avoid name clashes,
use a underscore suffix:

struct x record
{

@char * name;
char * x:name ;
};

Not that the namespace prefix convention can be used instead:

struct x record
{

@char * name;
char * x name;
};

which avoids the name clash. However, the resulting schema is different since the last example
generates a global name element definition that is referenced by the local element.

More specifically, the difference between the namespace prefix convention with double underscores
and colon notation is that the namespace prefix convention generates schema element/attribute
references to elements/attributes at the top level, while the colon notation only affects the lo-
cal element/attribute namespace qualification by form overriding. This is best illustrated by an
example:

struct x record
{

char * :name;
char * x:phone;
char * x fax;
char * y zip;
};

which generates the following x.xsdschema:

<complexType name="record">
<sequence>
<element name="name" type="xsd:string" minOccurs="0" maxOccurs="1" nillable="true"

form="unqualified"/>
<element name="phone" type="xsd:string" minOccurs="0" maxOccurs="1" nillable="true"

form="qualified"/>
<element ref="x:fax" minOccurs="0" maxOccurs="1"/>
<element ref="y:zip" minOccurs="0" maxOccurs="1"/>

</sequence>
</complexType>
<element name="fax" type="xsd:string"/>

208

and the y.xsd schema defines contains:

<element name="zip" type="xsd:string"/>

18 SOAP/XML Over UDP

UDP is a simple, unreliable datagram protocol: UDP sockets are connectionless. UDP address
formats are identical to those used by TCP. In particular UDP provides a port identifier in addition
to the normal Internet address format. The UDP port space is separate from the TCP port space
(i.e. a UDP port may not be “connected” to a TCP port). In addition broadcast packets may be
sent (assuming the underlying network supports this) by using a reserved “broadcast address”; this
address is network interface dependent.

Client-side messages with SOAP-over-UDP endpoint URLs (soap.udp://...) will be automatically
transmitted as datagrams. Server-side applications should set the SOAP IO UDP mode flag to accept
UDP requests, e.g. using soap init1 or soap set mode.

The maximum message length for datagram packets is restricted by the buffer size SOAP BUFLEN,
which is 65536 by default, unless compiled with WITH LEAN to support small-scale embedded sys-
tems. For UDP transport SOAP BUFLEN must not exceed the maximum UDP packet size 65536
(the size of datagram messages is constrained by the UDP packet size 216 = 65536 as per UDP
standard). You can use gzip compression to reduce the message size, but note that compressed
SOAP-over-UDP is a gSOAP-specific feature because it is not part of the SOAP-over-UDP speci-
fication.

The SOAP-over-UDP specification relies on WS-Addressing. The wsa.h file in the import directory
defines the WS-Addressing elements for client and server applications.

The gSOAP implementation conforms to the SOAP-over-UDP requirements:

• SOAP-over-UDP server endpoint URL format: soap.udp://host:port/path

• Support one-way message-exchange pattern (MEP) where a SOAP envelope is carried in a
user datagram.

• Support request-response message-exchange pattern (MEP) where SOAP envelopes are car-
ried in user datagrams.

• Support multicast transmission of SOAP envelopes carried in user datagrams.

• Support both SOAP 1.1 and SOAP 1.2 envelopes.

The following additional features are also available, but are not supported by the SOAP-over-UDP
specification:

• Zlib/gzip message compression (compile -DWITH GZIP).

• SOAP with DIME attachments over UDP.

• SOAP with MIME attachments (SwA) over UDP.

• Support for IPv6 (compile -DWITH IPV6)

209

18.1 Using WS-Addressing with SOAP-over-UDP

A SOAP-over-UDP application MUST use WS-Addressing to control message delivery as per
SOAP-over-UDP specification.

The wsa.h file in the import directory defines the WS-Addressing elements. To include the WS-
Addressing elements in the SOAP Header for messaging, a struct SOAP ENV Header structure must
be defined in your header file with the appropriate WS-Addressing elements. For example:

#import ”wsa.h”
struct SOAP ENV Header
{

mustUnderstand wsa MessageID wsa MessageID 0;
mustUnderstand wsa RelatesTo *wsa RelatesTo 0;
mustUnderstand wsa From *wsa From 0;
mustUnderstand wsa ReplyTo *wsa ReplyTo 0;
mustUnderstand wsa FaultTo *wsa FaultTo 0;
mustUnderstand wsa To wsa To 0;
mustUnderstand wsa Action wsa Action 0;
};

We also included a //gsoap wsa schema import directive in the wsa.h file to enable the generation of
WSDL specifications that import (instead of includes) the WS-Addressing elements. Note that the
//gsoapopt w directive must not be present in your header file to enable WSDL generation.

One-way SOAP-over-UDP messages (see Section 7.3) should be declared to include the wsa:MessageID,
wsa:To, and wsa:Action elements in the SOAP Header of the request message as follows:

//gsoap ns service method-header-part: sendString wsa MessageID
//gsoap ns service method-header-part: sendString wsa To
//gsoap ns service method-header-part: sendString wsa Action
int ns sendString(char *str, void);

Request-response SOAP-over-UDP messages should be declared to include the wsa:MessageID, wsa:To,
wsa:Action, and wsa:ReplyTo elements in the SOAP Header of the request message, and the the
wsa:MessageID, wsa:To, wsa:Action, and wsa:RelatesTo elements in the SOAP Header of the response
message:

//gsoap ns service method-header-part: echoString wsa MessageID
//gsoap ns service method-header-part: echoString wsa To
//gsoap ns service method-header-part: echoString wsa Action
//gsoap ns service method-input-header-part: sendString wsa ReplyTo
//gsoap ns service method-output-header-part: echoString wsa RelatesTo
int ns echoString(char *str, char **res);

For the content requirements of these elements, please consult the SOAP-over-UDP specification
and/or read the next sections explaining SOAP-over-UDP unicast, multicast, one-way, and request-
response client and server applications.

210

18.2 Client-side One-way Unicast

This example assumes that the gSOAP header file includes the SOAP Header with WS-Addressing
elements and the ns sendString function discussed in Section 18.1

struct soap soap;
struct SOAP ENV Header header; // the SOAP Header
soap init(&soap);
soap.send timeout = 1; // 1s timeout
soap default SOAP ENV Header(&soap, &header); // init SOAP Header
header.wsa MessageID = ”message ID”;
header.wsa To = ”server URL”;
header.wsa Action = ”server action”;
soap.header = &header; // bind the SOAP Header for transport
// Send the message over UDP:
if (soap send ns echoString(&soap, ”soap.udp://...”, NULL, ”hello world!”))

soap print fault(&soap, stderr); // report error
soap end(&soap); // cleanup
soap destroy(&soap); // cleanup
soap done(&soap); // close connection (should not use soap struct after this)

18.3 Client-side One-way Multicast

This example is similar to the one-way unicast example discussed above, but uses a broadcast
address and the SO BROADCAST socket option:

struct soap soap;
struct SOAP ENV Header header; // the SOAP Header
in addr t addr = inet addr(”1.2.3.4”); // optional
soap init(&soap);
soap.send timeout = 1; // 1s timeout
soap.connect flags = SO BROADCAST; // required for broadcast
soap.ipv4 multicast if = &addr; // optional for IPv4: see setsockopt IPPROTO IP IP MULTICAST IF
soap.ipv6 multicast if = addr; // optional for IPv6: multicast sin6 scope id
soap.ipv4 multicast ttl = 1; // optional, see setsockopt IPPROTO IP, IP MULTICAST TTL
soap default SOAP ENV Header(&soap, &header); // init SOAP Header
header.wsa MessageID = ”message ID”;
header.wsa To = ”server URL”;
header.wsa Action = ”server action”;
soap.header = &header; // bind the SOAP Header for transport
// Send the message over UDP to a broadcast address:
if (soap send ns echoString(&soap, ”soap.udp://...”, NULL, ”hello world!”))

soap print fault(&soap, stderr); // report error
soap destroy(&soap); // cleanup
soap end(&soap); // cleanup
soap done(&soap); // close connection (should not use soap struct after this)

Please refer to the socket options for IPPROTO IP IP MULTICAST IF to specify the default
interface for multicast datagrams to be sent from. This is a struct in addr (in addr t for sin6 scope id)

211

interface value. Otherwise, the default interface set by the system administrator will be used (if
any).

Please refer to the socket options for IPPROTO IP IP MULTICAST TTL to limit the lifetime of
the packet. Multicast datagrams are sent with a default value of 1, to prevent them to be forwarded
beyond the local network. This parameter can be set between 1 to 255.

18.4 Client-side Request-Response Unicast

This example assumes that the gSOAP header file includes the SOAP Header with WS-Addressing
elements and the ns echoString function discussed in Section 18.1

struct soap soap;
struct SOAP ENV Header header; // the SOAP Header
struct wsa EndpointReferenceType replyTo; // (anonymous) reply address
char *res; // server response
soap init(&soap);
soap.send timeout = 1; // 1s timeout
soap.recv timeout = 1; // 1s timeout
soap default SOAP ENV Header(&soap, &header); // init SOAP Header
soap default wsa EndpointReferenceType(&soap, &replyTo); // init reply address
replyTo.Address = ”http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous”;
header.wsa MessageID = ”message ID”;
header.wsa To = ”server URL”;
header.wsa Action = ”server action”;
header.wsa ReplyTo = &replyTo;
soap.header = &header; // bind the SOAP Header for transport
// Send and receive messages over UDP:
if (soap call ns echoString(&soap, ”soap.udp://...”, NULL, ”hello world!”, &res))
{

if (soap.error == SOAP EOF && soap.errnum == 0)
// Timeout: no response from server (message already delivered?)

else
soap print fault(&soap, stderr);

}
else

// UDP server response is stored in ’res’
// check SOAP header received, if applicable
check header(&soap.header);
soap destroy(&soap); // cleanup
soap end(&soap); // cleanup
soap done(&soap); // close connection (should not use soap struct after this)

18.5 Client-side Request-Response Multicast

This example is similar to the request-response unicast example discussed above, but uses a broad-
cast address and the SO BROADCAST socket option. Because we expect to receive multiple re-
sponses, we also need to use separate request-response messages to send one request and consume

212

multiple responses. In this example we defined a bcastString request and a bcastStringResponse re-
sponse message, which are essentially declared as one-way messages in the header file:

//gsoap ns service method-header-part: bcastString wsa MessageID
//gsoap ns service method-header-part: bcastString wsa To
//gsoap ns service method-header-part: bcastString wsa Action
//gsoap ns service method-header-part: bcastString wsa ReplyTo
int ns bcastString(char *str, void);
//gsoap ns service method-header-part: bcastStringResponse wsa MessageID
//gsoap ns service method-header-part: bcastStringResponse wsa To
//gsoap ns service method-header-part: bcastStringResponse wsa Action
//gsoap ns service method-header-part: bcastStringResponse wsa RelatesTo
int ns bcastStringResponse(char *res, void);

To obtain response one-way operations, use the wsdl2h -b option.

The client code includes a loop to receive response messages until a timeout occurs:

struct soap soap;
struct SOAP ENV Header header;
struct wsa EndpointReferenceType replyTo;
char *res;
soap init(&soap);
soap.connect flags = SO BROADCAST;
soap.send timeout = 1; // 1s timeout
soap.recv timeout = 1; // 1s timeout
soap default SOAP ENV Header(&soap, &header);
soap.header = &header;
soap default wsa EndpointReferenceType(&soap, &replyTo);
replyTo.Address = ”http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous”;
header.wsa MessageID = ”message ID”;
header.wsa To = ”server URL”;
header.wsa Action = ”server action”;
header.wsa ReplyTo = &replyTo;
if (soap send ns bcastString(&soap, ”soap.udp://...”, NULL, ”hello world!”))

soap print fault(&soap, stderr);
else
{

for (;;)
{

if (soap recv ns bcastStringResponse(&soap, &res))
break;

// Got response ’res’ from a server
}
if (soap.error == SOAP EOF && soap.errnum == 0)

// Timeout: no more messages received
else

soap print fault(&soap, stderr);
}
soap destroy(&soap); // cleanup
soap end(&soap); // cleanup
soap done(&soap); // close connection (should not use soap struct after this)

213

Note that a server for the bcastString does not need to use two-one way messages. Thus, multicast
request-response message pattern can be declared and implemented as request-response operations
at the server side.

18.6 SOAP-over-UDP Server

The following example code illustrates a SOAP-over-UDP server for one-way sendString and request-
response echoString messages. This example assumes that the gSOAP header file includes the SOAP
Header with WS-Addressing elements and the ns echoString function discussed in Section 18.1.

int main()
{

struct soap soap;
soap init1(&soap, SOAP IO UDP); // must set UDP flag
// bind to host (NULL=current host) and port:
if (!soap valid socket(soap bind(&soap, host, port, 100)))
{

soap print fault(&soap, stderr);
exit(1);

}
for (;;)
{

if (soap serve(&soap))
soap print fault(&soap, stderr); // report the problem

soap destroy(&soap);
soap end(&soap);

}
soap done(&soap); // close connection
}
int ns echoString(struct soap *soap, char *str, char **res)
{

if (!soap->header)
return soap sender fault(soap, ”No SOAP header”, NULL);

if (!soap->header->wsa MessageID)
return soap sender fault(soap, ”No WS-Addressing MessageID”, NULL);

soap->header->wsa RelatesTo = (struct wsa Relationship*)soap malloc(soap, sizeof(struct
wsa Relationship));

soap default wsa Relationship(soap, soap->header->wsa RelatesTo);
soap->header->wsa RelatesTo-> item = soap->header->wsa MessageID;
// must check for duplicate messages
if (check received(soap->header->wsa MessageID))
{

// Request message already received
return SOAP STOP; // don’t return response

}
if (!soap->header->wsa ReplyTo || !soap->header->wsa ReplyTo->Address)

return soap sender fault(soap, ”No WS-Addressing ReplyTo address”, NULL);
soap->header->wsa To = soap->header->wsa ReplyTo->Address;
soap->header->wsa MessageID = soap strdup(soap, soap int2s(soap, id count++)) ;
soap->header->wsa Action = ”http://genivia.com/udp/echoStringResponse”;

214

*res = str;
return SOAP OK;
}
int ns sendString(struct soap *soap, char *str)
{

if (!soap->header)
return SOAP STOP;

if (!soap->header->wsa MessageID)
return SOAP STOP;

// must check for duplicate messages
if (check received(soap->header->wsa MessageID))

return SOAP STOP;
return SOAP OK;
}
int ns sendStringResponse(struct soap *soap, char *res)
{ return SOAP NO METHOD; } // we don’t expect to serve this message

The server binds to a host and port and accepts messages in a tight sequential loop. Because
UDP does not have the equivalent of an accept the messages cannot be dispatched to threads, the
soap serve waits for a message and immediately accepts it. You can use a receive timeout to make
soap serve non-blocking.

To obtain response one-way operations from a WSDL, use the wsdl2h -b option. This produces
additional one-way operations to support asynchronous handling of response messages in the same
way requests are handled.

18.7 SOAP-over-UDP Multicast Receiving Server

For UDP multicast support, follow the suggestions in Section 18.6 and change the initialization
parts of the code to enable UDP multicast port binding by to telliing the kernel which multicast
groups you are interested in:

int main()
{

struct soap soap;
struct ip mreq mcast;
soap init1(&soap, SOAP IO UDP); if (!soap valid socket(soap bind(&soap, host, port, 100)))
{

soap print fault(&soap, stderr);
exit(1);

}
mcast.imr multiaddr.s addr = inet addr(”put IP multicast address of group here”);
mcast.imr interface.s addr = htonl(INADDR ANY);
if (setsockopt(soap.master, IPPROTO IP, IP ADD MEMBERSHIP, &mcast, sizeof(mcast))¡0)

... error ...

215

19 Advanced Features

19.1 Internationalization

gSOAP uses regular strings by default. Regular strings cannot be used to hold UCS characters
outside of the character range [1,255]. gSOAP can handle wide-character content in two ways.
First, applications can utilize wide-character strings (wchar t*) instead of regular strings to store
wide-character content. For example, the xsd:string string schema type can be declared as a
wide-character string and used subsequently:

typedef wchar t *xsd string;
...
int ns myMethod(xsd string input, xsd string *output);

Second, regular strings can be used to hold wide-character content in UTF-8 format. This is
accomplished with the SOAP C UTFSTRING flag (for both input/output mode), see Section 9.12.
With this flag set, gSOAP will deserialize XML into regular strings in UTF-8 format. An application
is responsible for filling regular strings with UTF-8 content to ensure that strings can be correctly
serialized XML. Third, the SOAP C MBSTRING flag (for both input/output mode) can be used to
activate multibyte character support. Multibyte support depends on the locale settings for dealing
with extended natural language encodings.

Both regular strings and wide-character strings can be used together within an application. For
example, the following header file declaration introduces two string schema types:

typedef wchar t *xsd string;
typedef char *xsd string ; // trailing ’ ’ avoids name clash
...
int ns myMethod(xsd string input, xsd string *output);

The input string parameter is a wide-character string and the output string parameter is a regular
string. The regular string has UCS character content in the range [1,255] unless the SOAP C UTFSTRING

flag is set. With this flag, the string has UTF-8 encoded content.

Please consult the UTF-8 specification for details on the UTF-8 format. Note that the ASCII
character set [1-127] is a subset of UTF-8. Therefore, with the SOAP C UTFSTRING flag set, strings
may hold ASCII character data and UTF-8 extensions.

19.2 Customizing the WSDL and Namespace Mapping Table File Contents
With gSOAP Directives

A header file can be augmented with directives for the gSOAP soapcpp2 tool to automatically
generate customized WSDL and namespace mapping tables contents. The WSDL and namespace
mapping table files do not need to be modified by hand (Sections 7.2.9 and 10.4). In addition,
the sample SOAP/XML request and response files generated by the compiler are valid provided
that XML Schema namespace information is added to the header file with directives so that the
gSOAP soapcpp2 compiler can produce example SOAP/XML messages that are correctly namespace

216

qualified. These compiler directive are specified as //-comments. (Note: blanks can be used
anywhere in the directive, except between // and gsoap.)

Three directives are currently supported that can be used to specify details associated with names-
pace prefixes used by the service operation names in the header file. To specify the name of a Web
Service in the header file, use:

//gsoap namespace-prefix service name: service-name

where namespace-prefix is a namespace prefix used by identifiers in the header file and service-name
is the name of a Web Service (only required to create new Web Services). The name may be followed
by text up to the end of the line which is incorporated into the WSDL service documentation.
Alternatively, the service documentation can be provided with the directive below.

To specify the name of the WSDL definitions in the header file, use:

//gsoap namespace-prefix service definitions: definitions-name

where namespace-prefix is a namespace prefix used by identifiers in the header file and definitions-
name is the name of the WSDL definitions. By default, the WSDL definitions name is the same as
the service name.

To specify the documentation of a Web Service in the header file, use:

//gsoap namespace-prefix service documentation: text

where namespace-prefix is a namespace prefix used by identifiers in the header file and text is the
documentation text up to the end of the line. The text is incorporated into the WSDL service
documentation.

To specify the portType of a Web Service in the header file, use:

//gsoap namespace-prefix service portType: portType-name

or just

//gsoap namespace-prefix service type: portType-name

or using WSDL 2.0 terms

//gsoap namespace-prefix service interface: portType-name

where namespace-prefix is a namespace prefix used by identifiers in the header file and portType-
name is the portType name of the WSDL service portType.

To specify the port name of a Web Service in the header file, use:

//gsoap namespace-prefix service portName: port-name

217

where namespace-prefix is a namespace prefix used by identifiers in the header file and port-name is
the name of the WSDL service port element. By default, the port name is the same as the service
name.

To specify the binding name of a Web Service in the header file, use:

//gsoap namespace-prefix service binding: binding-name

where namespace-prefix is a namespace prefix used by identifiers in the header file and binding-name
is the binding name of the WSDL service binding element. By default, the binding name is the
same as the service name.

To specify the binding’s transport protocol of a Web Service in the header file, use:

//gsoap namespace-prefix service transport: transport-URL

where namespace-prefix is a namespace prefix used by identifiers in the header file and transport-
URL is the URL of the transport protocol such as http://schemas.xmlsoap.org/soap/http for HTTP.
HTTP transport is assumed by default.

To specify the location (or port endpoint) of a Web Service in the header file, use:

//gsoap namespace-prefix service location: URL

or alternatively

//gsoap namespace-prefix service endpoint: URL

or

//gsoap namespace-prefix service port: URL

where URL is the location of the Web Service (only required to create new Web Services). The
URL specifies the path to the service executable (so URL/service-executable is the actual location of
the executable when declared).

To specify the name of the executable of a Web Service in the header file, use:

//gsoap namespace-prefix service executable: executable-name

where executable-name is the name of the executable of the Web Service.

When doc/literal encoding is required for the entire service, the service encoding can be specified
in the header file as follows:

//gsoap namespace-prefix service encoding: literal

or when the SOAP-ENV:encodingStyle attribute is different from the SOAP 1.1/1.2 encoding style:

//gsoap namespace-prefix service encoding: encoding-style

218

To specify the namespace URI of a Web Service in the header file, use:

//gsoap namespace-prefix service namespace: namespace-URI

where namespace-URI is the URI associated with the namespace prefix.

In addition, the schema namespace URI can be specified in the header file:

//gsoap namespace-prefix schema namespace: namespace-URI

where namespace-URI is the schema URI associated with the namespace prefix. If present, it
defines the schema-part of the generated WSDL file and the URI in the namespace mapping table.
This declaration is useful when the service declares its own data types that need to be associated
with a namespace. Furthermore, the header file for client applications do not need the full service
details and the specification of the schema namespaces for namespace prefixes suffices. In addition,
a second namespace can be defined that is only used to match the namespaces of inbound XML:

//gsoap namespace-prefix schema namespace2: namespace-URI-pattern

If the first namespace does not match the inbound parsed XML, then the second will be tried. This
pattern may contain ’*’ multichar wildcards and ’-’ single chard wildcards. This allows two or more
namespace versions to be handled by the same namespace prefix.

The directive above specifies a new schema and the gSOAP soapcpp2 compiler generates a schema
files (.xsd) file for the schema. An existing schema namespace URI can be imported with:

//gsoap namespace-prefix schema import: namespace-URI

where namespace-URI is the schema URI associated with the namespace prefix. gSOAP does
not produce XML Schema files for imported schemas and imports the schema namespaces in the
generated WSDL file.

A schema namespace URI can be imported from a location with:

//gsoap namespace-prefix schema namespace: namespace-URI
//gsoap namespace-prefix schema import: schema-location

The elementFormDefault and attributeFormDefault qualification of a schema can be defined with:

//gsoap namespace-prefix schema elementForm: qualified
//gsoap namespace-prefix schema attributeForm: qualified

or:

//gsoap namespace-prefix schema elementForm: unqualified
//gsoap namespace-prefix schema attributeForm: unqualified

A shortcut to define the default qualification of elements and attributes of a schema:

//gsoap namespace-prefix schema form: qualified

219

or:

//gsoap namespace-prefix schema form: unqualified

To include xsi:type attributes in the runtime XML element output for specific schemas, use:

//gsoap namespace-prefix schema typed: yes

Note that soapcpp2 -t enables xsi:type for all elements in the runtime XML output.

To document a data type, use:

//gsoap namespace-prefix schema type-documentation: type-name //text

where type-name is the unqualified name of the data type and text is a line of text terminated by a
newline. Do not use any XML reserved characters in text such as < and >. Use well-formed XML
and XHTML markup instead. For example:

//gsoap ns schema type-documentation: tdata stores transaction
data
class ns tdata
{ ... }

To document a data type’s fields and members, use:

//gsoap namespace-prefix schema type-documentation: type-name::field //text

where type-name is the unqualified name of the data type, field is a field, member, or enum name,
and text is a line of text terminated by a newline. Do not use any XML reserved characters in text
such as < and >. Use well-formed XML and XHTML markup instead. For example:

//gsoap ns schema type-documentation: tdata::id the transaction number
//gsoap ns schema type-documentation: tdata::state transaction state
//gsoap ns schema type-documentation: tstate::INIT initial state
//gsoap ns schema type-documentation: tstate::DONE final state
class ns tdata
{ @int id;

enum ns tstate { INIT, DONE } state;
...
}

The documentation form above can also be used to document SOAP/XML message parts in the
generated WSDL. For the type-name use the function name. For the field names, you can use the
function name and/or the function argument names.

To document a method, use:

//gsoap namespace-prefix service method-documentation: method-name //text

220

where method-name is the unqualified name of the method and text is a line of text terminated
by a newline. Do not use any XML reserved characters in text such as < and >. Use well-formed
XML and XHTML markup instead. For example:

//gsoap ns service method-documentation: getQuote returns a <i>stock quote</i>
int ns getQuote(char *symbol, float & result);

To specify the SOAP Action for a SOAP method, use:

//gsoap namespace-prefix service method-action: method-name action

where method-name is the unqualified name of the method and action is a string without spaces
and blanks (the string can be quoted when preferred). For example:

//gsoap ns service method-action: getQuote ””
int ns getQuote(char *symbol, float & result);

Or, alternatively for the input action (part of the request):

//gsoap ns service method-input-action: getQuote ””
int ns getQuote(char *symbol, float & result);

To specify the HTTP “location” of REST methods to a perform POST/GET/PUT action, use:

//gsoap namespace-prefix service method-action: method-name action

where method-name is the unqualified name of the method and action is a string without spaces
and blanks (the string can be quoted when preferred). This directive requires that the protocol:

directive for this method is set to HTTP, POST, GET, or PUT.

A response action and fault action are defined by:

//gsoap namespace-prefix service method-output-action: method-name action //gsoap namespace-
prefix service method-fault-action: method-name action

To override the SOAP or REST protocol of an operation (SOAP by default), use:

//gsoap namespace-prefix service method-protocol: method-name protocol

where protocol is one of

SOAP default SOAP transport (supports 1.1 and 1.2)
SOAP1.1 SOAP 1.1 only
SOAP1.2 SOAP 1.2 only
SOAP-GET one-way SOAP with HTTP GET
SOAP1.1-GET one-way SOAP 1.1 with HTTP GET
SOAP1.2-GET one-way SOAP 1.1 with HTTP GET
HTTP REST HTTP (POST or one-way PUT)
POST REST HTTP POST
GET one-way REST HTTP GET
PUT one-way REST HTTP PUT
DELETE REST HTTP DELETE

221

When document style is preferred for a particular service method, use:

//gsoap namespace-prefix service method-style: method-name document

When SOAP RPC encoding is required for a particular service method, use:

//gsoap namespace-prefix service method-encoding: method-name encoded

When literal encoding is required for a particular service method, use:

//gsoap namespace-prefix service method-encoding: method-name literal

or when the SOAP-ENV:encodingStyle attribute is different from the SOAP 1.1/1.2 encoding style,
use:

//gsoap namespace-prefix service method-encoding: method-name encoding-style

When SOAP RPC encoding is required for a particular service method response when the request
message is literal, use:

//gsoap namespace-prefix service method-response-encoding: method-name encoded

When literal encoding is required for a particular service method response when the request message
is encoded, use:

//gsoap namespace-prefix service method-response-encoding: method-name literal

or when the SOAP-ENV:encodingStyle attribute is different from the SOAP 1.1/1.2 encoding style,
use:

//gsoap namespace-prefix service method-response-encoding: method-name encoding-style

Note that the method-response-encoding is set to the value of method-encoding by default.

When header processing is required, each method declared in the WSDL should provide a binding
to the parts of the header that may appear as part of a method request message. Such a binding
is given by:

//gsoap namespace-prefix service method-header-part: method-name header-part

For example:

struct SOAP ENV Header
{

char *h transaction;
struct UserAuth *h authentication;
};

Suppose method ns login uses both header parts (at most), then this is declared as:

222

//gsoap ns service method-header-part: login h transaction
//gsoap ns service method-header-part: login h authentication
int ns login(...);

Suppose method ns search uses only the first header part, then this is declared as:

//gsoap ns service method-header-part: search h transaction
int ns search(...);

Note that the method name and header part names MUST be namespace qualified. The headers
MUST be present in all operations that declared the header parts.

To specify the header parts for the method input (method request message), use:

//gsoap namespace-prefix service method-input-header-part: method-name header-part

Similarly, to specify the header parts for the method output (method response message), use:

//gsoap namespace-prefix service method-output-header-part: method-name header-part

The declarations above only affect the WSDL. For example:

struct SOAP ENV Header
{

char *h transaction;
struct UserAuth *h authentication;
};
//gsoap ns service method-input-header-part: login h authentication
//gsoap ns service method-input-header-part: login h transaction
//gsoap ns service method-output-header-part: login h transaction
int ns login(...);

The headers MUST be present in all operations that declared the header parts.

To specify MIME attachments for the method input and output (method request and response
messages), use:

//gsoap namespace-prefix service method-mime-type: method-name mime-type

You can repeat this directive for all multipartRelated MIME attachments you want to associate
with the method.

To specify MIME attachments for the method input (method request message), use:

//gsoap namespace-prefix service method-input-mime-type: method-name mime-type

Similarly, to specify MIME attachments for the method output (method response message), use:

//gsoap namespace-prefix service method-output-mime-type: method-name mime-type

You can repeat these directives for all multipartRelated MIME attachments you want to associate
with the method.

223

19.2.1 Example

The use of directives is best illustrated with an example. The example uses a hypothetical stock
quote service and exchange rate service, actual services such as these are available for free on the
web.

//gsoap ns1 service namespace: urn:GetQuote
int ns1 getQuote(char *symbol, float &result);

//gsoap ns2 service namespace: urn:CurrencyExchange
int ns2 getRate(char *country1, char *country2, float &result);

//gsoap ns3 service name: quotex
//gsoap ns3 service style: rpc
//gsoap ns3 service encoding: encoded
//gsoap ns3 service port: http://www.mydomain.com/quotex.cgi
//gsoap ns3 service namespace: urn:quotex
int ns3 getQuote(char *symbol, char *country, float &result);

The quotex.h example is a new Web Service created by combining two existing Web Services: a
Stock Quote service and a Currency Exchange service.

Namespace prefix ns3 is used for the new quotex Web Service with namespace URI urn:quotex, service
name quotex, and endpoint port http://www.mydomain.com/quotex.cgi.

Since the new Web Service invokes the ns1 getQuote and ns2 getRate service operations, the service
namespaces and other details such as style and encoding of these methods are given by directives.
After invoking the gSOAP soapcpp2 tool on the quotex.h header file:

> soapcpp2 quotex.h

the WSDL of the new quotex Web Service is saved as quotex.wsdl. Since the service name, endpoint
port, and namespace URI were provided in the header file, the generated WSDL file can be published
together with the compiled Web Service installed as a CGI application.

The namespace mapping table for the quotex.cpp Web Service implementation is saved as quo-

tex.nsmap. This file can be directly included in quotex.cpp instead of specified by hand in the source
of quotex.cpp:

#include ”quotex.nsmap”

The automatic generation and inclusion of the namespace mapping table requires compiler directives
for all namespace prefixes to associate each namespace prefix with a namespace URI. Otherwise,
namespace URIs have to be manually added to the table (they appear as http://tempuri.org).

19.3 Transient Data Types

There are situations when certain data types have to be ignored by gSOAP for the compilation
of (de)marshalling routines. For example, in certain cases only a few members of a class or struct

224

need not be (de)serialized, or the base class of a derived class should not be (de)serialized. Certain
built-in classes such as ostream cannot be (de)serialized. Data parts that should be kept invisible
to gSOAP are called “transient”. Transient data types and transient struct/class members are
declared with the extern keyword or are declared within [and] blocks in the header file. The extern

keyword has a special meaning to the gSOAP soapcpp2 compiler and won’t affect the generated
codes. The special [and] block construct can be used with data type declarations and within
struct and class declarations. The use of extern or [] achieve the same effect, but [] may be more
convenient to encapsulate transient types in a larger part of the header file. The use of extern with
typedef is reserved for the declaration of user-defined external (de)serializers for data types, see
Section 19.5.

First example:

extern class ostream; // ostream can’t be (de)serialized, but need to be declared to make it visible
to gSOAP
class ns myClass
{ ...

virtual void print(ostream &s) const; // need ostream here
...
};

Second example:

[
class myBase // base class need not be (de)serialized
{ ... };

]
class ns myDerived : myBase
{ ... };

Third example:

[typedef int transientInt;]
class ns myClass
{

int a; // will be (de)serialized
[
int b; // transient field
char s[256]; // transient field
]
extern float d; // transient field
char *t; // will be (de)serialized
transientInt *n; // transient field
[
virtual void method(char buf[1024]); // does not create a char[1024] (de)serializer
]
};

In this example, class ns myClass has three transient fields: b, s, and n which will not be (de)serialized
in SOAP. Field n is transient because the type is declared within a transient block. Pointers,

225

references, and arrays of transient types are transient. The single class method is encapsulated
within [and] to prevent gSOAP from creating (de)serializers for the char[1024] type. gSOAP will
generate (de)serializers for all types that are not declared within a [and] transient block.

19.4 Serialization ”as is” with Volatile Data Types

Volatile-declared data types in gSOAP are assumed to be part of an existing non-modifiable software
package, such as a built-in library. It would not make sense to redefine the data types in a gSOAP
header file. In certain cases it could also be problematic to have classes augmented with serializer
methods. When you need to (de)serialize such data types ”as is”, you must declare them in a
gSOAP header file and use the volatile qualifier.

Consider for example struct tm, declared in time.h. The structure may actually vary between plat-
forms, but the tm structure includes at least the following fields:

volatile struct tm
{

int tm sec; /* seconds (0 - 60) */
int tm min; /* minutes (0 - 59) */
int tm hour; /* hours (0 - 23) */
int tm mday; /* day of month (1 - 31) */
int tm mon; /* month of year (0 - 11) */
int tm year; /* year - 1900 */
int tm wday; /* day of week (Sunday = 0) */
int tm yday; /* day of year (0 - 365) */
int tm isdst; /* is summer time in effect? */
char *tm zone; /* abbreviation of timezone name */
long tm gmtoff; /* offset from UTC in seconds */
};

Note that we qualified the structure volatile in the gSOAP header file to inform the gSOAP soapcpp2

compiler that it should not attempt to redeclare it. We can now readily serialize and deserialize
the tm structure. The following program fragment serializes the local time stored in a tm structure
to stdout:

struct soap *soap = soap new();
...
time t T = time(NULL);
struct tm *t = localtime(&T);
struct soap *soap = soap new();
soap write tm(soap, t);
soap destroy(soap);
soap end(soap);
soap free(soap); // detach and free context

It is also possible to serialize the tm fields as XML attributes using the @ qualifier, see Section 11.6.7.

If you must produce a schema file, say time.xsd, that defines an XML schema and namespace for
the tm struct, you can add a typedef declaration to the header file:

226

typedef struct tm time struct tm;

We used the typedef name time struct tm rather than time tm, because a schema name clash will
occur with the latter since taking off the time prefix will result in the same name being used.

Classes should be declared volatile to prevent modification of these classes by ithe gSOAP soapcpp2

source code output. Note that gSOAP adds serialization methods to classes to support polymor-
phism. However, this is a problem when you can’t modify class declarations because they are part
of a non-modifiable software package. The solution is to declare these classes volatile, similar to the
tm structure example illustrated above. You can also use a typedef to associate a schema with a
class.

19.5 How to Declare User-Defined Serializers and Deserializers

Users can declare their own (de)serializers for specific data types instead of relying on the gSOAP-
generated (de)serializers. To declare a external (de)serializer, declare a type with extern typedef.
gSOAP will not generate the (de)serializers for the type name that is declared. For example:

extern typedef char *MyData;
struct Sample
{

MyData s; // use user-defined (de)serializer for this field
char *t; // use gSOAP (de)serializer for this field
};

The user is required to supply the following routines for each extern typedef’ed name T:

void soap serialize T(struct soap *soap, const T *a)
void soap default T(struct soap *soap, T *a)
void soap out T(struct soap *soap, const char *tag, int id, const T *a, const char *type)
T *soap in T(struct soap *soap, const char *tag, T *a, const char *type)

The function prototypes can be found in soapH.h.

For example, the (de)serialization of MyData can be done with the following code:

void soap serialize MyData(struct soap *soap, MyData *const*a)
{ } // no need to mark this node (for multi-ref and cycle detection)
void soap default MyData(&soap, MyData **a)
{ *a = NULL }
void soap out MyData(struct soap *soap, const char *tag, int id, MyData *const*a, const char
*type)
{

soap element begin out(soap, tag, id, type); // print XML beginning tag
soap send(soap, *a); // just print the string (no XML conversion)
soap element end out(soap, tag); // print XML ending tag
}
MyData **soap in MyData(struct soap *soap, const char *tag, MyData **a, const char *type)
{

if (soap element begin in(soap, tag))

227

return NULL;
if (!a)

a = (MyData**)soap malloc(soap, sizeof(MyData*));
if (soap->null)

*a = NULL; // xsi:nil element
if (*soap->type && soap match tag(soap, soap->type, type))
{

soap->error = SOAP TYPE;
return NULL; // type mismatch

}
if (*soap->href)

a = (MyData**)soap id forward(soap, soap->href, a, SOAP MyData, sizeof(MyData*))
else if (soap->body)
{

char *s = soap value(soap); // fill buffer
a = (char)soap malloc(soap, strlen(s)+1);
strcpy(*a, s);

}
if (soap->body && soap element end in(soap, tag))

return NULL;
return a;

More information on custom (de)serialization will be provided in this document or in a separate
document in the future. The writing of the (de)serializer code requires the use of the low-level
gSOAP API.

19.6 How to Serialize Data Without Generating XSD Type Attributes

gSOAP serializes data in XML with xsi:type attributes when the types are declared with namespace
prefixes to indicate the schema type of the data contained in the elements. SOAP 1.1 and 1.2
requires xsi:type attributes in the presence of polymorphic data or when the type of the data
cannot be deduced from the SOAP payload. The namespace prefixes are associated with the type
names of typedefs (Section 11.3) for primitive data types, struct/class names, and enum names.

To prevent the output of these xsi:type attributes in the XML serialization, you can simply use
type declarations that do not include these namespace prefixes. That is, don’t use the typedefs for
primitive types and use unqualified type names with structs, classes, and enums.

However, there are two issues. Firstly, if you want to use a primitive schema type that has no
C/C++ counterpart, you must declare it as a typedef name with a leading underscore, as in:

typedef char * xsd date;

This will produce the necessary xsd:date information in the WSDL output by the gSOAP soapcpp2

compiler. But the XML serialization of this type at run time won’t include the xsi:type attribute.
Secondly, to include the proper schema definitions in the WSDL produced by the gSOAP soapcpp2

compiler, you should use qualified struct, class, and enum names with a leading underscore, as in:

struct ns myStruct
{ ... };

228

This ensures that myStruct is associated with a schema, and therefore included in the appropriate
schema in the generated WSDL. The leading underscore prevents the XML serialization of xsi:type
attributes for this type in the SOAP/XML payload.

19.7 Function Callbacks for Customized I/O and HTTP Handling

gSOAP provides five callback functions for customized I/O and HTTP handling:

Callback (function pointer)
SOAP SOCKET (*soap.fopen)(struct soap *soap, const char *endpoint, const char *host, int port)
Called from a client proxy to open a connection to a Web Service located at endpoint. Input
parameters host and port are micro-parsed from endpoint. Should return a valid file descriptor, or
SOAP INVALID SOCKET and soap->error set to an error code. Built-in gSOAP function: tcp connect
int (*soap.fclose)(struct soap *soap)
Called by client proxy multiple times, to close a socket connection before a new socket connection
is established and at the end of communications when the SOAP IO KEEPALIVE flag is not set and
soap.keep alive6=0 (indicating that the other party supports keep alive). Should return SOAP OK,
or a gSOAP error code. Built-in gSOAP function: tcp disconnect

229

Callback (function pointer)
int (*soap.fget)(struct soap *soap)
Called by the main server loop upon an HTTP GET request. The SOAP GET METHOD error is
returned by default. This callback can be used to respond to HTTP GET methods with content, see
Section 19.10. Should return SOAP OK, or a gSOAP error code. Built-in gSOAP function: http get
int (*soap.fput)(struct soap *soap)
Called by the main server loop upon an HTTP PUT request. The SOAP PUT METHOD error is
returned by default. This callback can be used to respond to HTTP PUT. Should return SOAP OK,
or a gSOAP error code. Built-in gSOAP function: http put
int (*soap.fdel)(struct soap *soap)
Called by the main server loop upon an HTTP DELETE request. The SOAP DELETE METHOD
error is returned by default. This callback can be used to respond to HTTP DELETE methods.
Should return SOAP OK, or a gSOAP error code. Built-in gSOAP function: http del
int (*soap.fhead)(struct soap *soap)
Called by the main server loop upon an HTTP HEAD request. The SOAP HEAD METHOD error is
returned by default. This callback can be used to respond to HTTP HEAD methods. Should return
SOAP OK, or a gSOAP error code. Built-in gSOAP function: http get
int (*soap.fform)(struct soap *soap)
Called by the main server loop when a user-defined fparsehdr callback returned SOAP FORM to
signal that the HTTP body must be processed by this form handler callback. The HTTP POST
form data MUST be read, otherwise keep-alive messages will end up out of sync. Should return
SOAP OK or a gSOAP error code. Built-in gSOAP function: none.
int (*soap.fpost)(struct soap *soap, const char *endpoint, const char *host, int port, const char
*path, const char *action, size t count)
Called from a client proxy to generate the HTTP header to connect to endpoint. Input parameters
host, port, and path are micro-parsed from endpoint, action is the SOAP action, and count is the
length of the SOAP message or 0 when SOAP ENC XML is set or when SOAP IO LENGTH is reset.
Use function soap send(struct soap *soap, char *s) to write the header contents. Should return
SOAP OK, or a gSOAP error code. Built-in gSOAP function: http post.
int (*soap.fposthdr)(struct soap *soap, const char *key, const char *val)
Called by http post and http response (through the callbacks). Emits HTTP key: val header entries.
Should return SOAP OK, or a gSOAP error code. Built-in gSOAP function: http post header.
int (*soap.fresponse)(struct soap *soap, int soap error code, size t count)
Called from a service to generate the response HTTP header. Input parameter soap error code is
a gSOAP error code (see Section 10.2 and count is the length of the SOAP message or 0 when
SOAP ENC XML is set or when SOAP IO LENGTH is reset. Use function soap send(struct soap
*soap, char *s) to write the header contents. Should return SOAP OK, or a gSOAP error code
Built-in gSOAP function: http response
int (*soap.fparse)(struct soap *soap)
Called by client proxy and service to parse an HTTP header (if present). When user-defined, this
routine must at least skip the header. Use function int soap getline(struct soap *soap, char *buf, int
len) to read HTTP header lines into a buffer buf of length len (returns empty line at end of HTTP
header). Should return SOAP OK, or a gSOAP error code. Built-in gSOAP function: http parse
int (*soap.fparsehdr)(struct soap *soap, const char *key, const char *val)
Called by http parse (through the fparse callback). Handles HTTP key: val header entries to set
gSOAP’s internals. Should return SOAP OK, SOAP STOP (see fstop) or a gSOAP error code.
Built-in gSOAP function: http parse header

230

Callback (function pointer)
int (*soap.fsend)(struct soap *soap, const char *s, size t n)
Called for all send operations to emit contents of s of length n. Should return SOAP OK, or a
gSOAP error code. Built-in gSOAP function: fsend
size t (*soap.frecv)(struct soap *soap, char *s, size t n)
Called for all receive operations to fill buffer s of maximum length n. Should return the number of
bytes read or 0 in case of an error, e.g. EOF. Built-in gSOAP function: frecv
int (*soap.fignore)(struct soap *soap, const char *tag)
Called when an unknown XML element was encountered on the input. The tag parameter is
the offending XML element tag name. Should return SOAP OK, or a gSOAP error code such
as SOAP TAG MISMATCH to throw an exception. Built-in gSOAP function: none.
int (*soap.fconnect)(struct soap *soap, const char *endpoint, const char *host, int port)
When non-NULL, this callback is called for all client-to-server connect operations instead of the built-
in socket connect code. Therefore, it can be used to override the built-in connection establishment.
Parameter endpoint contains the server endpoint URL, host the domain name or IP, and port the
port number. Should return SOAP OK, or a gSOAP error code. Built-in gSOAP function: none
SOAP SOCKET (*soap.faccept)(struct soap *soap, SOAP SOCKERT s, struct sockaddr *a, int *n)
Called by soap accept. This is a wrapper routine for accept. Given master socket s should return
a valid socket descriptor or SOAP INVALID SOCKET and set soap->error to an error code. Built-in
gSOAP function: tcp accept
int (*soap.fresolve)(struct soap *soap, const char *addr, struct in addr *inaddr)
Called by soap bind if a host name is given and soap connect to resolve a domain name addr. Should
set in addr *a and return SOAP OK or return SOAP ERR upon failure.
Built-in gSOAP function: tcp gethost
int (*soap.fpoll)(struct soap *soap)
Used by clients to check if the server is still responsive.
Built-in gSOAP function: soap poll
int (*soap.fserveloop)(struct soap *soap)
Called after successful invocation of a server operation in the server loop, immediately after sending
the response to a client. Can be used to clean up resources (e.g. using soap end()) while serving a
long sequence of keep-alive connections. Should return SOAP OK, or set soap->error to a gSOAP
error code and return soap->error. Built-in gSOAP function: none.
void (*soap.fmalloc)(struct soap *soap, size t n)
Use to override memory allocation for deserialized C data. Memory allocated via this callback will
not be automatically released by the gSOAP engine. The application must release this data by
keeping track of the allocations. Note: it is not safe to traverse deserialized data structures and free
each node, since data might be shared (SOAP multiref) and some allocated data such as the HTTP
SOAPAction might no be part of the structure.
Built-in gSOAP function: none.
int (*soap.fheader)(struct soap *soap)
Called immediately after parsing a SOAP Header. The SOAP Header struct referenced by
soap->header can be inspected and verified. The function should return SOAP OK or a fault.
Built-in gSOAP function: none.
void (*soap.fseterror)(struct soap *soap, const char **code, const char **string)
Called to set the SOAP Fault code and string values based on the value of soap->error. Allows
user-defined messages to be associated with gSOAP error codes to override gSOAP’s built-in error
messages.
Built-in gSOAP function: none.

231

In addition, a void*user field in the struct soap data structure is available to pass user-defined data
to the callbacks.

The following example uses I/O function callbacks for customized serialization of data into a fixed-
size buffer and deserialization back into a datastructure:

char buf[10000]; // XML buffer
int len1 = 0; // #chars written
int len2 = 0; // #chars read
// mysend: put XML in buf[]
int mysend(struct soap *soap, const char *s, size t n)
{

if (len1 + n > sizeof(buf))
return SOAP EOF;

strcpy(buf + len1, s);
len1 += n;
return SOAP OK;
}
// myrecv: get XML from buf[]
size t myrecv(struct soap *soap, char *s, size t n)
{

if (len2 + n > len1)
n = len1 - len2;

strncpy(s, buf + len2, n);
len2 += n;
return n;
}
int main()
{

struct soap soap;
struct ns person p;
soap init(&soap);
len1 = len2 = 0; // reset buffer pointers
p.name = ”John Doe”;
p.age = 25;
soap.fsend = mysend; // assign callback
soap.frecv = myrecv; // assign callback
soap begin(&soap);
soap set omode(&soap, SOAP XML TREE);
soap serialize ns person(&soap, &p);
soap put ns person(&soap, &p, ”ns:person”, NULL);
if (soap.error)
{

soap print fault(&soap, stdout);
exit(1);

}
soap end(&soap);
soap begin(&soap);
soap get ns person(&soap, &p, ”ns:person”, NULL);
if (soap.error)
{

soap print fault(&soap, stdout);

232

exit(1);
}
soap destroy(&soap);
soap end(&soap);
soap done(&soap); // disable callbacks
}

A fixed-size buffer to store the outbound message sent is not flexible to handle large content. To
store the message in an expanding buffer, use for example:

struct buffer
{

size t len;
size t max;
char *buf;
};
int main()
{

struct buffer *h = malloc(sizeof(struct buffer));
h->len = 0;
h->max = 0;
h->buf = NULL;
soap.user = (void *)h; // pass buffer as a handle to the callback
soap.fsend = mysend; // assign callback
...
if (h->len)
{

... // use h->buf[0..h->len-1] content
// then cleanup:
h->len = 0;
h->max = 0;
free(h->buf);
h->buf = NULL;

}
...
}
int mysend(struct soap *soap, const char *s, size t n)
{

struct buffer *h = (struct buffer*)soap->user; // get buffer through handle
int m = h->max, k = h->len + n;
// need to increase space?
if (m == 0)

m = 1024;
else

while (k >= m)
m *= 2;

if (m != h->max)
{

char *buf = malloc(m);
memcpy(buf, h->buf, h->len);
h->max = m;

233

if(h->buf)
free(h->buf);

h->buf = buf;
}
memcpy(h->buf + h->len, s, n);
h->len += n;
return SOAP OK;
}

The soap done function can be called to reset the callback to the default internal gSOAP I/O and
HTTP handlers.

The following example illustrates customized I/O and (HTTP) header handling. The SOAP request
is saved to a file. The client proxy then reads the file contents as the service response. To perform
this trick, the service response has exactly the same structure as the request. This is declared by
the struct ns test output parameter part of the service operation declaration. This struct resembles
the service request (see the generated soapStub.h file created from the header file).

The header file is:

//gsoap ns service name: callback
//gsoap ns service namespace: urn:callback
struct ns person
{

char *name;
int age;
};
int ns test(struct ns person in, struct ns test &out);

The client program is:

#include ”soapH.h”
...
SOAP SOCKET myopen(struct soap *soap, const char *endpoint, const char *host, int port)
{

if (strncmp(endpoint, ”file:”, 5))
{

printf(”File name expected\n”);
return SOAP INVALID SOCKET;

}
if ((soap->sendfd = soap->recvfd = open(host, O RDWR|O CREAT, S IWUSR|S IRUSR)) < 0)

return SOAP INVALID SOCKET;
return soap->sendfd;
}
void myclose(struct soap *soap)
{

if (soap->sendfd > 2) // still open?
close(soap->sendfd); // then close it

soap->recvfd = 0; // set back to stdin
soap->sendfd = 1; // set back to stdout
}

234

int mypost(struct soap *soap, const char *endpoint, const char *host, const char *path, const
char *action, size t count)
{

return soap send(soap, ”Custom-generated file\n”); // writes to soap->sendfd
}
int myparse(struct soap *soap)
{

char buf[256];
if (lseek(soap->recvfd, 0, SEEK SET) < 0 || soap getline(soap, buf, 256)) // go to begin and

skip custom header
return SOAP EOF;

return SOAP OK;
}
int main()
{

struct soap soap;
struct ns test r;
struct ns person p;
soap init(&soap); // reset
p.name = ”John Doe”;
p.age = 99;
soap.fopen = myopen; // use custom open
soap.fpost = mypost; // use custom post
soap.fparse = myparse; // use custom response parser
soap.fclose = myclose; // use custom close
soap call ns test(&soap, ”file://test.xml”, ””, p, r);
if (soap.error)
{

soap print fault(&soap, stdout);
exit(1);

}
soap end(&soap);
soap init(&soap); // reset to default callbacks
}

SOAP 1.1 and 1.2 specify that XML elements may be ignored when present in a SOAP payload
on the receiving side. gSOAP ignores XML elements that are unknown, unless the XML attribute
mustUnderstand="true" is present in the XML element. It may be undesirable for elements to be
ignored when the outcome of the omission is uncertain. The soap.fignore callback can be set to a func-
tion that returns SOAP OK in case the element can be safely ignored, or SOAP MUSTUNDERSTAND

to throw an exception, or to perform some application-specific action. For example, to throw an
exception as soon as an unknown element is encountered on the input, use:

int myignore(struct soap *soap, const char *tag)
{

return SOAP MUSTUNDERSTAND; // never skip elements (secure)
}
...
soap.fignore = myignore;
soap call ns method(&soap, ...); // or soap serve(&soap);

235

To selectively throw an exception as soon as an unknown element is encountered but element ns:xyz
can be safely ignored, use:

int myignore(struct soap *soap, const char *tag)
{

if (soap match tag(soap, tag, ”ns:xyz”) != SOAP OK)
return SOAP MUSTUNDERSTAND;

return SOAP OK;
}
...
soap.fignore = myignore;
soap call ns method(&soap, ...); // or soap serve(&soap)
...
struct Namespace namespaces[] =
{
{”SOAP-ENV”, ”http://schemas.xmlsoap.org/soap/envelope/”},
{”SOAP-ENC”,”http://schemas.xmlsoap.org/soap/encoding/”},
{”xsi”, ”http://www.w3.org/2001/XMLSchema-instance”},
{”xsd”, ”http://www.w3.org/2001/XMLSchema”},
{”ns”, ”some-URI”}, // the namespace of element ns:xyz
{NULL, NULL}

Function soap match tag compares two tags. The third parameter may be a pattern where * is a
wildcard and - is a single character wildcard. So for example soap match tag(tag, ”ns:*”) will match
any element in namespace ns or when no namespace prefix is present in the XML message.

The callback can also be used to keep track of unknown elements in an internal data structure such
as a list:

struct Unknown
{

char *tag;
struct Unknown *next;
};
int myignore(struct soap *soap, const char *tag)
{

char *s = (char*)soap malloc(soap, strlen(tag)+1);
struct Unknown *u = (struct Unknown*)soap malloc(soap, sizeof(struct Unknown));
if (s && u)
{

strcpy(s, tag);
u->tag = s;
u->next = ulist;
ulist = u;

}
}
...
struct soap *soap;
struct Unknown *ulist = NULL;
soap init(&soap);

236

soap.fignore = myignore;
soap call ns method(&soap, ...); // or soap serve(&soap)
// print the list of unknown elements
soap end(&soap); // clean up

19.8 HTTP 1.0 and 1.1

gSOAP uses HTTP 1.1 by default. You can revert to HTTP 1.0 as follows:

struct soap soap;
soap init(&soap);
...
soap.http version = ”1.0”;

This sets the HTTP version and reconfigures the engine to revert to HTTP 1.0. Note that you
cannot use HTTP chunking with HTTP 1.0.

19.9 HTTP 307 Temporary Redirect Support

The client-side handling of HTTP 307 code ”Temporary Redirect” and any of the redirect codes
301, 302, and 303 are not automated in gSOAP. Client application developers may want to consider
adding a few lines of code to support redirects. It was decided not to automatically support redirects
for the following reasons:

• Redirecting a secure HTTPS address to a non-secure HTTP address via 307 creates a security
vulnerability.

• Cyclic redirects must be detected (e.g. allowing only a limited number of redirect levels).

• Redirecting HTTP POST will result in re-serialization and re-post of the entire SOAP request.
The SOAP request message must be re-posted in its entirity when re-issuing the SOAP
operation to a new address.

To implement client-side 307 redirect, add the following lines of code:

char *endpoint = NULL; // use default endpoint given in WSDL (or add another one here)
int n = 10; // max redirect count
while (n−−)
{

if (soap call ns1 myMethod(soap, endpoint, ...))
{

if ((soap->error >= 301 && soap->error <= 303) || soap->error == 307)
endpoint = soap strdup(soap, soap->endpoint); // endpoint from HTTP 301, 302, 303, 307

Location header
else
{ ... report and handle error

break;
}

237

}
else

break;
}

19.10 HTTP GET Support

To implement your own HTTP (HTTPS) GET request responses, you need to set the soap.fget

callback. The callback is required to produce a response to the request in textual form, such as a
Web page or a SOAP/XML response. This method does not work with CGI.

The following example produces a Web page upon a HTTP GET request (e.g. from a browser):

struct soap *soap = soap new();
soap->fget = http get;
...
soap serve(soap);
...
int http get(struct soap *soap)
{

soap response(soap, SOAP HTML); // HTTP response header with text/html
soap send(soap, ”¡HTML¿My Web server is operational.¡/HTML¿”);
soap end send(soap);
return SOAP OK;
}

The example below produces a WSDL file upon a HTTP GET with path ?wsdl:

int http get(struct soap *soap)
{

FILE *fd = NULL;
char *s = strchr(soap->path, ’?’);
if (!s || strcmp(s, ”?wsdl”))

return SOAP GET METHOD;
fd = fopen(”myservice.wsdl”, ”rb”); // open WSDL file to copy
if (!fd)

return 404; // return HTTP not found error
soap->http content = ”text/xml”; // HTTP header with text/xml content
soap response(soap, SOAP FILE);
for (;;)
{

size t r = fread(soap->tmpbuf, 1, sizeof(soap->tmpbuf), fd);
if (!r)

break;
if (soap send raw(soap, soap->tmpbuf, r))

break; // can’t send, but little we can do about that
}
fclose(fd);
soap end send(soap);
return SOAP OK;
}

238

Using one-way SOAP/XML message, you can also return a SOAP/XML response:

int http get(struct soap *soap)
{

if ((soap->omode & SOAP IO) != SOAP IO CHUNK)
soap set omode(soap, SOAP IO STORE); // if not chunking we MUST buffer entire content

to determine content length
soap response(soap, SOAP OK);
return soap send ns1 mySendMethodResponse(soap, ””, NULL, ... params ...);
}

where ns1 mySendMethodResponse is a one-way message declared in a gSOAP header file as:

int ns1 mySendMethodResponse(... params ..., void);

The generated soapClient.cpp includes the sending-side stub function.

19.11 TCP and HTTP Keep-Alive

gSOAP supports keep-alive socket connections. To activate keep-alive support, set the SOAP IO KEEPALIVE

flag for both input and output modes, see Section 9.12. For example

struct soap soap;
soap init2(&soap, SOAP IO KEEPALIVE, SOAP IO KEEPALIVE);

When a client or a service communicates with another client or service that supports keep alive, the
attribute soap.keep alive will be set to 1, otherwise it is reset to 0 (indicating that the other party will
close the connection). The connection maybe terminated on either end before the communication
completed, for example when the server keep-alive connection has timed out. This generates a
”Broken Pipe” signal on Unix/Linux platforms. This signal can be caught with a signal handler:

signal(SIGPIPE, sigpipe handle);

where, for example:

void sigpipe handle(int x) { }

Alternatively, broken pipes can be kept silent by setting:

soap.socket flags = MSG NOSIGNAL;

This setting will not generate a sigpipe but read/write operations return SOAP EOF instead. Note
that Win32 systems do not support signals and lack the MSG NOSIGNAL flag. The sigpipe handling
and flags are not very portable.

A connection will be kept open only if the request contains an HTTP 1.0 header with ”Connection:
Keep-Alive” or an HTTP 1.1 header that does not contain ”Connection: close”. This means

239

that a gSOAP client method call should use ”http://” in the endpoint URL of the request to the
stand-alone service to ensure HTTP headers are used.

If the client does not close the connection, the server will wait forever when no recv timeout is
specified. In addition, other clients will be denied service as long as a client keeps the connection
to the server open. To prevent this from happening, the service should be multi-threaded such that
each thread handles the client connection:

int main(int argc, char **argv)
{

struct soap soap, *tsoap;
pthread t tid;
int m, s;
soap init2(&soap, SOAP IO KEEPALIVE, SOAP IO KEEPALIVE);
soap.max keep alive = 100; // at most 100 calls per keep-alive session
soap.accept timeout = 600; // optional: let server time out after ten minutes of inactivity
m = soap bind(&soap, NULL, 18000, BACKLOG); // use port 18000 on the current machine
if (m < 0)
{

soap print fault(&soap, stderr);
exit(1);

}
fprintf(stderr, "Socket connection successful %d\n", m);
for (count = 0; count >= 0; count++)
{

soap.socket flags = MSG NOSIGNAL; // use this
soap.accept flags = SO NOSIGPIPE; // or this to prevent sigpipe
s = soap accept(&soap);
if (s < 0)
{

if (soap.errnum)
soap print fault(&soap, stderr);

else
fprintf(stderr, "Server timed out\n"); // Assume timeout is long enough for threads to

complete serving requests
break;

}
fprintf(stderr, "Accepts socket %d connection from IP %d.%d.%d.%d\n", s, (int)(soap.ip>>24)&0xFF,

(int)(soap.ip>>16)&0xFF, (int)(soap.ip>>8)&0xFF, (int)soap.ip&0xFF);
tsoap = soap copy(&soap);
pthread create(&tid, NULL, (void*(*)(void*))process request, (void*)tsoap);

}
return 0;
}
void *process request(void *soap)
{

pthread detach(pthread self());
((struct soap*)soap)->recv timeout = 300; // Timeout after 5 minutes stall on recv
((struct soap*)soap)->send timeout = 60; // Timeout after 1 minute stall on send
soap serve((struct soap*)soap);
soap destroy((struct soap*)soap);
soap end((struct soap*)soap);

240

soap free((struct soap*)soap);
return NULL;
}

To prevent a malicious client from keeping a thread waiting forever by keeping the connection
open, timeouts are set in the process request routine as shown. See Section 19.19 for more details on
timeout settings.

A gSOAP client call will automatically attempt to re-establish a connection to a server when the
server has terminated the connection for any reason. This way, a sequence of calls can be made
to the server while keeping the connection open. Client stubs will poll the server to check if
the connection is still open. When the connection was terminated by the server, the client will
automatically reconnect.

A client should reset SOAP IO KEEPALIVE just before the last call to a server to close the connection
after this last call. This will close the socket after the call and also informs the server to gracefully
close the connection.

The client-side can also set the TCP keep-alive socket properties, using the soap.tcp keep alive flag
(set to 1 to enable), soap.tcp keep idle to set the TCP KEEPIDLE value, soap.tcp keep intvl to set the
TCP KEEPINTVL value, and soap.tcp keep cnt to set the TCP KEEPCNT value.

If a client is in the middle of soap call that might take a long time and the server goes away/down
the caller does not get any feedback until the soap.recv timeout is reached. Enabling TCP keep alive
on systems that support it allows for a faster connection teardown detection for applications that
need it.

19.12 HTTP Chunked Transfer Encoding

gSOAP supports HTTP chunked transfer encoding. Un-chunking of inbound messages takes place
automatically. Outbound messages are never chunked, except when the SOAP IO CHUNK flag is set
for the output mode. Most Web services, however, will not accept chunked inbound messages.

19.13 HTTP Buffered Sends

The entire outbound message can be stored to determine the HTTP content length rather than the
two-phase encoding used by gSOAP which requires a separate pass over the data to determine the
length of the outbound message. Setting the flag SOAP IO STORE for the output mode will buffer
the entire message. This can speed up the transmission of messages, depending on the content, but
may require significant storage space to hold the verbose XML message.

Zlib compressed transfers require buffering. The SOAP IO STORE flag is set when the SOAP ENC ZLIB

flag is set to send compressed messages. The use of chunking significantly reduces memory usage
and may speed up the transmission of compressed SOAP/XML messages. This is accomplished by
setting the SOAP IO CHUNK flag with SOAP ENC ZLIB for the output mode.

241

19.14 HTTP Authentication

HTTP authentication (basic) is enabled at the client-side by setting the soap.userid and soap.passwd

strings to a username and password, respectively. A server may request user authentication and
denies access (HTTP 401 error) when the client tries to connect without HTTP authentication (or
with the wrong authentication information).

Here is an example client code fragment to set the HTTP authentication username and password:

struct soap soap;
soap init(&soap);
soap.userid = ”guest”;
soap.passwd = ”visit”;
...

A client SOAP request will have the following HTTP header:

POST /XXX HTTP/1.0
Host: YYY
User-Agent: gSOAP/2.2
Content-Type: text/xml; charset=utf-8
Content-Length: nnn
Authorization: Basic Z3Vlc3Q6Z3Vlc3Q=
...

A client MUST set the soap.userid and soap.passwd strings for each call that requires client authen-
tication. The strings are reset after each successful or unsuccessful call.

When present, the value of the WWW-Authenticate HTTP header with the authentication realm
can be obtained from the soap.authrealm string. This is useful for clients to respond intelligently to
authentication requests.

A stand-alone gSOAP Web Service can enforce HTTP authentication upon clients, by checking
the soap.userid and soap.passwd strings. These strings are set when a client request contains HTTP
authentication headers. The strings SHOULD be checked in each service method (that requires
authentication to execute).

Here is an example service method implementation that enforced client authentication:

int ns method(struct soap *soap, ...)
{

if (!soap->.userid || !soap->.passwd || strcmp(soap->.userid, ”guest”) || strcmp(soap->.passwd,
”visit”)) return 401; ...
}

When the authentication fails, the service response with a SOAP Fault message and a HTTP error
code ”401 Unauthorized”. The HTTP error codes are described in Section 10.2.

19.15 HTTP NTLM Authentication

HTTP NTLM authentication is enabled at the client-side by installing libntlm from http://www.
nongnu.org/libntlm and compiling all project source codes with -DWITH NTLM.

242

In your application code set the soap.userid, soap.passwd, and soap.authrealm strings to a username,
password, and the authentication domain respectively. A server may request NTLM authentication
and denies access (HTTP 401 authentication required or HTTP 407 HTTP proxy authentication
required) when the client tries to connect without HTTP authentication (or with the wrong au-
thentication information).

Here is an example client code fragment to set the NTLM authentication username and password:

struct soap soap;
soap init1(&soap, SOAP IO KEEPALIVE);
if (soap call ns method(&soap, ...)) { if (soap.error == 401) { soap.userid = ”Zaphod”;

soap.passwd = ”Beeblebrox”;
soap.authrealm = ”Ursa-Minor”;
if (soap call ns method(&soap, ...)) ...

The following NTLM handshake between the client C and server S is performed:

1: C --> S POST ...
Content-Type: text/xml; charset=utf-8

2: C <-- S 401 Unauthorized
WWW-Authenticate: NTLM

3: C --> S GET ...
Authorization: NTLM <base64-encoded type-1-message>

4: C <-- S 401 Unauthorized
WWW-Authenticate: NTLM <base64-encoded type-2-message>

5: C --> S POST ...
Content-Type: text/xml; charset=utf-8
Authorization: NTLM <base64-encoded type-3-message>

6: C <-- S 200 OK

where stages 1 and 2 indicates a client attempting to connect without authorization information,
which is the first method call in the code above. Stage 3 to 6 happen with the proper client
authentication set with soap.userid, soap.passwd, and soap.authrealm provided. NTLM authenticates
connections, not requests. When the connection is kept alive, subsequent messages can be ex-
changed without re-authentication.

To avoid the overhead of the first rejected call, use:

struct soap soap;
soap init1(&soap, SOAP IO KEEPALIVE);
soap.userid = ”Zaphod”;
soap.passwd = ”Beeblebrox”;
soap.authrealm = ”Ursa-Minor”;
soap.ntlm challenge = ””;
if (soap call ns method(&soap, ...)) ...

243

When the authentication fails (stage 1 and 2), the service response with a SOAP Fault message
and a HTTP error code ”401 Unauthorized”. The HTTP error codes are described in Section 10.2.

On windows, an alternative is to use the WinInet module, which has built-in NTLM support.
The WinInet for gSOAP module is available in the mod gsoap directory of the gSOAP package.
Instructions for WinInet use are included there.

19.16 HTTP Proxy NTLM Authentication

For HTTP 407 Proxy Authentication Required, set the proxy userid and passwd:

struct soap soap;
soap init1(&soap, SOAP IO KEEPALIVE);
soap.proxy host = ”...”;
soap.proxy port = ...;
if (soap call ns method(&soap, ...))
{ if (soap.error == 407)
{ soap.proxy userid = ”Zaphod”;

soap.proxy passwd = ”Beeblebrox”;
soap.authrealm = ”Ursa-Minor”;
if (soap call ns method(&soap, ...))

...

To avoid the overhead of the first rejected call, use:

struct soap soap;
soap init1(&soap, SOAP IO KEEPALIVE);
soap.proxy host = ”...”;
soap.proxy port = ...;
soap.proxy userid = ”Zaphod”;
soap.proxy passwd = ”Beeblebrox”;
soap.authrealm = ”Ursa-Minor”;
soap.ntlm challenge = ””;
if (soap call ns method(&soap, ...)) ...

19.17 HTTP Proxy Basic Authentication

HTTP proxy authentication (basic) is enabled at the client-side by setting the soap.proxy userid and
soap.proxy passwd strings to a username and password, respectively. For example, a proxy server may
request user authentication. Otherwise, access is denied by the proxy (HTTP 407 error). Example
client code fragment to set proxy server, username, and password:

struct soap soap;
soap init(&soap);
soap.proxy host = ”xx.xx.xx.xx”; // IP or domain
soap.proxy port = 8080;
soap.proxy userid = ”guest”;
soap.proxy passwd = ”guest”;
...

244

A client SOAP request will have the following HTTP header:

POST /XXX HTTP/1.0
Host: YYY
User-Agent: gSOAP/2.2
Content-Type: text/xml; charset=utf-8
Content-Length: nnn
Proxy-Authorization: Basic Z3Vlc3Q6Z3Vlc3Q=
...

When X-Forwarded-For headers are returned by the proxy, the header can be accessed in the
soap.proxy from string.

The CONNECT method is used for HTTP proxy authentication:

CONNECT server.example.com:80 HTTP/1.1

In some cases, it may be necessary to use the Host HTTP header with the CONNECT protocol:

CONNECT server.example.com:80 HTTP/1.1
Host: server.example.com:80

If so, compile the gSOAP code with -DWITH CONNECT HOST to include the Host HTTP header
with the CONNECT protocol.

19.18 Speed Improvement Tips

Here are some tips you can use to speed up gSOAP. gSOAP’s default settings are choosen to
maximize portability and compatibility. The settings can be tweaked to optimize the performance
as follows:

• Increase the buffer size SOAP BUFLEN by changing the SOAP BUFLEN macro in stdsoap2.h. Use
buffer size 218 = 262144 for example.

• Use HTTP keep-alive at the client-side, see 19.11, when the client needs to make a series
of calls to the same server. Server-side keep-alive support can greatly improve performance
of both client and server. But be aware that clients and services under Unix/Linux require
signal handlers to catch dropped connections.

• Use HTTP chunked transfers, see 19.12.

• Do NOT use gzip compression, even when transferring data over a modem connection.
Modems already compress data transfers.

19.19 Timeout Management for Non-Blocking Operations

Socket connect, accept, send, and receive timeout values can be set to manage socket communi-
cation timeouts. The soap.connect timeout, soap.accept timeout, soap.send timeout, and soap.recv timeout

245

attributes of the current gSOAP runtime context soap can be set to the appropriate user-defined
socket send, receive, and accept timeout values. A positive value measures the timeout in seconds.
A negative timeout value measures the timeout in microseconds (10−6 sec).

The soap.connect timeout specifies the timeout for soap call ns method calls.

The soap.accept timeout specifies the timeout for soap accept(&soap) calls.

The soap.send timeout and soap.recv timeout specify the timeout for non-blocking socket I/O opera-
tions.

Example:

struct soap soap;
soap init(&soap);
soap.send timeout = 10;
soap.recv timeout = 10;

This will result in a timeout if no data can be send in 10 seconds and no data is received within
10 seconds after initiating a send or receive operation over the socket. A value of zero disables
timeout, for example:

soap.send timeout = 0;
soap.recv timeout = 0;

When a timeout occurs in send/receive operations, a SOAP EOF exception will be raised (“end of
file or no input”). Negative timeout values measure timeouts in microseconds, for example:

#define uSec *-1
#define mSec *-1000
soap.accept timeout = 10 uSec;
soap.send timeout = 20 mSec;
soap.recv timeout = 20 mSec;

The macros improve readability.

Caution: Many Linux versions do not support non-blocking connect(). Therefore, setting soap.connect timeout

for non-blocking soap call ns method calls may not work under Linux.

19.20 Socket Options and Flags

gSOAP’s socket communications can be controlled with socket options and flags. The gSOAP
run-time context struct soap flags are: int soap.socket flags to control socket send() and recv() calls,
int soap.connect flags to set client connection socket options, int soap.bind flags to set server-side port
bind socket options, int soap.accept flags to set server-side request message accept socket options. See
the manual pages of send and recv for soap.socket flags values and see the manual pages of setsockopt

for soap.connect flags, soap.bind flags, and soap.accept flags (SOL SOCKET) values. These SO socket
option flags (see setsockopt manual pages) can be bit-wise or-ed to set multiple socket options
at once. The client-side flag soap.connect flags=SO LINGER is supported with values l onoff=1 and
l linger=soap.linger time. The soap.linger time determines the wait time (the time resolution is system

246

dependent, though according to some experts only zero and nonzero values matter). The linger
option can be used to manage the number of connections that remain in TIME WAIT state at the
server side.

For example, to disable sigpipe signals on Unix/Linux platforms use: soap.socket flags=MSG NOSIGNAL

and/or soap.connect flags=SO NOSIGPIPE (i.e. client-side connect) depending on your platform.

Use soap.bind flags=SO REUSEADDR to enable server-side port reuse and local port sharing (but be
aware of the possible security implications such as port hijacking).

Note that multiple socket options can be explicitly set with setsockopt as follows:

int sock = soap bind(soap, host, port, backlog);
if (soap valid socket(sock))
{

setsockopt(sock, ..., ..., ..., ...); setsockopt(sock, ..., ..., ..., ...);

19.21 Secure SOAP Web Services with HTTPS/SSL

When a Web Service is installed as CGI, it uses standard I/O that is encrypted/decrypted by the
Web server that runs the CGI application. HTTPS/SSL support must be configured for the Web
server (not CGI-based Web Service application itself).

To enable SSL for stand-alone gSOAP servers, first install OpenSSL and use option -DWITH OPENSSL

to compile the sources with your C or C++ compiler (or use -DWITH GNUTLS if you prefer
GNUTLS), for example:

> c++ -DWITH OPENSSL -o myprog myprog.cpp stdsoap2.cpp soapC.cpp soapServer.cpp -lssl
-lcrypto

SSL support for stand-alone gSOAP Web services is enabled by calling soap ssl accept to perform
the SSL/TLS handshake after soap accept. In addition, a key file, a CA file (or path to certificates),
DH file (if RSA is not used), and password need to be supplied. Instructions on how to do this can
be found in the OpenSSL documentation http://www.openssl.org. See also Section 19.24.

Let’s take a look at an example SSL secure multi-threaded stand-alone SOAP Web Service:

int main()
{

int m, s;
pthread t tid;
struct soap soap, *tsoap;
soap ssl init(); /* init OpenSSL (just once) */
if (CRYPTO thread setup()) // OpenSSL
{

fprintf(stderr, ”Cannot setup thread mutex\n”);
exit(1);

}
soap init(&soap);
if (soap ssl server context(&soap,

247

SOAP SSL DEFAULT,
”server.pem”, /* keyfile: required when server must authenticate to clients (see SSL docs on

how to obtain this file) */
”password”, /* password to read the key file (not used with GNUTLS) */
”cacert.pem”, /* optional cacert file to store trusted certificates */
NULL, /* optional capath to directory with trusted certificates */
”dh512.pem”, /* DH file name or DH key len bits (minimum is 512, e.g. ”512”) to generate

DH param, if NULL use RSA */
NULL, /* if randfile!=NULL: use a file with random data to seed randomness */
NULL /* optional server identification to enable SSL session cache (must be a unique name)

*/))
{

soap print fault(&soap, stderr);
exit(1);

}
m = soap bind(&soap, NULL, 18000, 100); // use port 18000
if (m < 0)
{

soap print fault(&soap, stderr);
exit(1);

}
fprintf(stderr, ”Socket connection successful: master socket = %d\n”, m);
for (;;)
{

s = soap accept(&soap);
fprintf(stderr, ”Socket connection successful: slave socket = %d\n”, s);
if (s < 0)
{

soap print fault(&soap, stderr);
break;

}
tsoap = soap copy(&soap); /* should call soap ssl accept on a copy */
if (!tsoap)

break;
pthread create(&tid, NULL, &process request, (void*)tsoap);

}
soap done(&soap); /* deallocates SSL context */
CRYPTO thread cleanup(); // OpenSSL
return 0;
}
void *process request(void *soap)
{

pthread detach(pthread self());
if (soap ssl accept((struct soap*)soap))

soap print fault(tsoap, stderr);
else

soap serve((struct soap*)soap);
soap destroy((struct soap*)soap);
soap end((struct soap*)soap);
soap free((struct soap*)soap); // done and free context
return NULL;

248

}

The soap ssl server context function initializes the server-side SSL context. The server.pem key file is
the server’s private key concatenated with its certificate. The cacert.pem is used to authenticate
clients and contains the client certificates. Alternatively a directory name can be specified. This
directory is assumed to contain the certificates. The dh512.pem file specifies that DH will be used
for key agreement instead of RSA. A numeric value greater than 512 can be provided instead as a
string constant (e.g. ”512”) to allow the engine to generate the DH parameters on the fly (this can
take a while) rather than retrieving them from a file. The randfile entry can be used to seed the
PRNG. The last entry enable server-side session caching. A unique server name is required.

The GNUTLS mutex lock setup is automatically peformed in the gSOAP engine, but only when
POSIX threads are detected and available.

OpenSSL requires mutex locks to be explicitly setup in your code for multithreaded applications,
for which we need to call CRYPTO thread setup() and CRYPTO thread cleanup(). These routines can
be found in openssl/crypto/threads/th-lock.c and are also used in the SSL example codes samples/ssl.
These routines are required to setup locks for multi-threaded applications that use SSL.

We give a Windows and POSIX threads implementation of these here:

#include <unistd.h> /* defines POSIX THREADS if pthreads are available */
#ifdef POSIX THREADS
include <pthread.h>
#endif
#if defined(WIN32)
define MUTEX TYPE HANDLE
define MUTEX SETUP(x) (x) = CreateMutex(NULL, FALSE, NULL)
define MUTEX CLEANUP(x) CloseHandle(x)
define MUTEX LOCK(x) WaitForSingleObject((x), INFINITE)
define MUTEX UNLOCK(x) ReleaseMutex(x)
define THREAD ID GetCurrentThreadID()
#elif defined(POSIX THREADS)
define MUTEX TYPE pthread mutex t
define MUTEX SETUP(x) pthread mutex init(&(x), NULL)
define MUTEX CLEANUP(x) pthread mutex destroy(&(x))
define MUTEX LOCK(x) pthread mutex lock(&(x))
define MUTEX UNLOCK(x) pthread mutex unlock(&(x))
define THREAD ID pthread self()
#else
error ”You must define mutex operations appropriate for your platform”
error ”See OpenSSL /threads/th-lock.c on how to implement mutex on your platform”
#endif
struct CRYPTO dynlock value { MUTEX TYPE mutex; };
static MUTEX TYPE *mutex buf;
static struct CRYPTO dynlock value *dyn create function(const char *file, int line)
{

struct CRYPTO dynlock value *value;
value = (struct CRYPTO dynlock value*)malloc(sizeof(struct CRYPTO dynlock value));
if (value)

MUTEX SETUP(value->mutex);

249

return value;
}
static void dyn lock function(int mode, struct CRYPTO dynlock value *l, const char *file, int
line)
{

if (mode & CRYPTO LOCK)
MUTEX LOCK(l->mutex);

else
MUTEX UNLOCK(l->mutex);

}
static void dyn destroy function(struct CRYPTO dynlock value *l, const char *file, int line)
{

MUTEX CLEANUP(l-¿mutex);
free(l);
}
void locking function(int mode, int n, const char *file, int line)
{

if (mode & CRYPTO LOCK)
MUTEX LOCK(mutex buf[n]);

else
MUTEX UNLOCK(mutex buf[n]);

}
unsigned long id function()
{

return (unsigned long)THREAD ID;
}
int CRYPTO thread setup()
{

int i;
mutex buf = (MUTEX TYPE*)malloc(CRYPTO num locks() * sizeof(MUTEX TYPE));
if (!mutex buf)

return SOAP EOM;
for (i = 0; i < CRYPTO num locks(); i++)

MUTEX SETUP(mutex buf[i]);
CRYPTO set id callback(id function);
CRYPTO set locking callback(locking function);
CRYPTO set dynlock create callback(dyn create function);
CRYPTO set dynlock lock callback(dyn lock function);
CRYPTO set dynlock destroy callback(dyn destroy function);
return SOAP OK;
}
void CRYPTO thread cleanup()
{

int i;
if (!mutex buf)

return;
CRYPTO set id callback(NULL);
CRYPTO set locking callback(NULL);
CRYPTO set dynlock create callback(NULL);
CRYPTO set dynlock lock callback(NULL);
CRYPTO set dynlock destroy callback(NULL);

250

for (i = 0; i < CRYPTO num locks(); i++)
MUTEX CLEANUP(mutex buf[i]);

free(mutex buf);
mutex buf = NULL;
}

For Unix and Linux, make sure you have signal handlers set in your service and/or client applications
to catch broken connections (SIGPIPE):

signal(SIGPIPE, sigpipe handle);

where, for example:

void sigpipe handle(int x) { }

By default, clients are not required to authenticate. To support client authentication use the
following:

if (soap ssl server context(&soap,
SOAP SSL REQUIRE CLIENT AUTHENTICATION,
”server.pem”,
”password”,
”cacert.pem”,
NULL,
”dh512.pem”,
NULL,
NULL

))
{

soap print fault(&soap, stderr);
exit(1);

}

This requires each client to authenticate with its certificate.

The cacert file and capath are optional. Either one can be specified when clients must run on non-
trusted systems (capath is not used with GNUTLS). We want to avoid storing trusted certificates
in the default location on the file system when that is not secure. Therefore, a flat cacert.pem file
or directory can be specified to store trusted certificates.

The gSOAP distribution includes a cacerts.pem file with the certificates of all certificate authorities
such as Verisign. You can use this file to verify the authentication of servers that provide certificates
issued by these CAs.

The cacert.pem, client.pem, and server.pem files in the gSOAP distribution are examples of self-signed
certificates. The client.pem and server.pem contain the client/server private key concatenated with
the certificate. The keyfiles (client.pem and server.pem) are created by concatenating the private key
PEM with the certificate PEM. The keyfile SHOULD NEVER be shared with any party. With
OpenSSL, you can encrypt the keyfiles with a password to offer some protection and the password
is used in the client/server code to read the keyfile. GNUTLS does not support this feature and
cannot encrypt or decrypt a keyfile.

251

Caution: it is important that the WITH OPENSSL macro MUST be consistently defined to compile
the sources, such as stdsoap2.cpp, soapC.cpp, soapClient.cpp, soapServer.cpp, and all application sources
that include stdsoap2.h or soapH.h. If the macros are not consistently used, the application will crash
due to a mismatches in the declaration and access of the gSOAP context.

19.22 Secure SOAP Clients with HTTPS/SSL

To utilize HTTPS/SSL, you need to install the OpenSSL library on your platform or GNUTLS for
a light-weight SSL/TLS library. After installation, compile all the sources of your application with
option -DWITH OPENSSL (or -DWITH GNUTLS when using GNUTLS). For example on Linux:

> c++ -DWITH OPENSSL myclient.cpp stdsoap.cpp soapC.cpp soapClient.cpp -lssl -lcrypto

or Unix:

> c++ -DWITH OPENSSL myclient.cpp stdsoap.cpp soapC.cpp soapClient.cpp -lxnet -lsocket -lnsl
-lssl -lcrypto

or you can add the following line to soapdefs.h:

#define WITH OPENSSL

and compile with option -DWITH SOAPDEFS H to include soapdefs.h in your project. A client program
simply uses the prefix https: instead of http: in the endpoint URL of a service operation call to a
Web Service to use encrypted transfers (if the service supports HTTPS). You need to specify the
client-side key file and password of the keyfile:

soap ssl init(); /* init OpenSSL (just once) */
if (soap ssl client context(&soap,

SOAP SSL DEFAULT,
”client.pem”, /* keyfile: required only when client must authenticate to server (see SSL docs on

how to obtain this file) */
”password”, /* password to read the key file (not used with GNUTLS) */
”cacerts.pem”, /* cacert file to store trusted certificates (needed to verify server) */ NULL, /*

capath to directory with trusted certificates */
NULL /* if randfile!=NULL: use a file with random data to seed randomness */

))
{

soap print fault(&soap, stderr);
exit(1);
}
soap call ns mymethod(&soap, ”https://domain/path/secure.cgi”, ””, ...);

By default, server authentication is enabled and the cacerts.pem or capath (not used with GNUTLS)
must be set so that the CA certificates of the server(s) are accessible at run time. The cacert.pem

file included in the package contains the certificates of common CAs. This file must be supplied
with the client, if server authentication is required. Althernatively, you can use the plugin/cacerts.h

and plugin/cacerts.c code to embed CA certificates in your client code.

252

Other client-side SSL options are SOAP SSL SKIP HOST CHECK to skip the host name verification
check and SOAP SSL ALLOW EXPIRED CERTIFICATE to allow connecting to a host with an expired
certificate. For example,

soap ssl init(); /* init OpenSSL (just once) */
if (soap ssl client context(&soap,

SOAP SSL REQUIRE SERVER AUTHENTICATION
— SOAP SSL SKIP HOST CHECK,
— SOAP SSL ALLOW EXPIRED CERTIFICATE,
”client.pem”, /* keyfile: required only when client must authenticate to server (see SSL docs on

how to obtain this file) */
”password”, /* password to read the key file (not used with GNUTLS) */
”cacerts.pem”, /* cacert file to store trusted certificates (needed to verify server) */ NULL, /*

capath to directory with trusted certificates */
NULL /* if randfile!=NULL: use a file with random data to seed randomness */

))
{

soap print fault(&soap, stderr);
exit(1);
}
soap call ns mymethod(&soap, ”https://domain/path/secure.cgi”, ””, ...);

For systems based on Microsoft windows, the WinInet module can be used instead, see mod gsoap/gsoap win/wininet.

To disable server authentication for testing purposes, use the following:

if (soap ssl client context(&soap,
SOAP SSL NO AUTHENTICATION,
NULL,
NULL,
NULL,
NULL,
NULL

))
{

soap print fault(&soap, stderr);
exit(1);
}

This also assumes that the server does not require clients to authenticate (the keyfile is absent).

Make sure you have signal handlers set in your application to catch broken connections (SIGPIPE):

signal(SIGPIPE, sigpipe handle);

where, for example:

void sigpipe handle(int x) { }

253

Caution: it is important that the WITH OPENSSL macro MUST be consistently defined to compile
the sources, such as stdsoap2.cpp, soapC.cpp, soapClient.cpp, soapServer.cpp, and all application sources
that include stdsoap2.h or soapH.h. If the macros are not consistently used, the application will crash
due to a mismatches in the declaration and access of the gSOAP context. Caution: concurrent
client calls MUST be made using separate soap structs copied with soap copy from an originating
struct initialized with soap ssl client context. In addition, the thread initialization code discussed in
Section 19.21 MUST be used to properly setup OpenSSL in a multi-threaded client application.

19.23 SSL Authentication Callback

gSOAP provides a callback function for authentication initialization:

Callback (function pointer)
int (*soap.fsslauth)(struct soap *soap)
Initialize the authentication information for clients and services, such as the certificate chain, pass-
word, read the key and/or DH file, generate an RSA key, and initialization of the RNG. Should
return a gSOAP error code or SOAP OK. Built-in gSOAP function: ssl auth init

19.24 SSL Certificates and Key Files

The gSOAP distribution includes a cacerts.pem file with the certificates of all certificate authorities
(such as Verisign). You can use this file to verify the authentication of servers that provide cer-
tificates issued by these CAs. Just set the cafile parameter to the location of this file on your file
system. Therefore, when you obtain a certifice signed by a trusted CA such as Verisign, you can
simply use the cacerts.pem file to develop client applications that can verify the authenticity of your
server.

Althernatively, you can use the plugin/cacerts.h and plugin/cacerts.c code to embed CA certificates in
your client code.

For systems based on Microsoft windows, the WinInet module can be used instead, see the README.txt

located in the package under mod gsoap/gsoap win/wininet.

The other .pem files in the gSOAP distribution are examples of self-signed certificates for testing
purposes (cacert.pem, client.pem, server.pem). The client.pem and server.pem contain the private key and
certificate of the client or server, respectively. The keyfiles (client.pem and server.pem) are created
by concatenating the private key PEM with the certificate PEM. The keyfile SHOULD NEVER be
shared with any party. With OpenSSL, you can encrypt the keyfiles with a password to offer some
protection and the password is used in the client/server code to read the keyfile. GNUTLS does
not support this feature and cannot encrypt or decrypt a keyfile.

You can also create your own self-signed certificates. There is more than one way to generate the
necessary files for clients and servers. See http://www.openssl.org for information on OpenSSL and
http://sial.org/howto/openssl/ca/ on how to setup and manage a local CA and http://sial.org/howto/openssl/self-

signed/ on how to setup self-signed test certificates.

It is also possible to convert IIS-generated certificates to PEM format, for more details and a
walk-through see http://www.icewarp.com/Knowledgebase/617.htm.

254

Here is the simplest way to setup self-signed certificates. First you need to create a private Cer-
tificate Authority (CA). The CA is used in SSL to verify the authenticity of a given certificate.
The CA acts as a trusted third party who has authenticated the user of the signed certificate as
being who they say. The certificate is signed by the CA, and if the client trusts the CA, it will
trust your certificate. For use within your organization, a private CA will probably serve your
needs. However, if you intend use your certificates for a public service, you should probably obtain
a certificate from a known CA (e.g. VeriSign). In addition to identification, your certificate is also
used for encryption.

Creating certificates should be done through a CA to obtain signed certificates. But you can create
your own certificates for testing purposes as follows.

• Go to the OpenSSL bin directory (/usr/local/ssl by default and /System/Library/OpenSSL on
Mac OS X)

• There should be a file called openssl.cnf

• Create a new directory in your home account, e.g. $HOME/CA, and copy the openssl.cnf file
to this directory

• Modify openssl.cnf by changing the ’dir’ value to HOME/CA

• Copy the README.txt, root.sh, and cert.sh scripts from the gSOAP distribution package
located in the samples/ssl directory to HOME/CA

• Follow the README.txt instructions

You now have a self-signed CA root certificate cacert.pem and a server.pem (or client.pem) certifi-
cate in PEM format. The cacert.pem certificate is used in the cafile parameter of the soap ssl client context

(or soap ssl server context) at the client (or server) side to verify the authenticity of the peer. You can
also provide a capath parameter to these trusted certificates. The server.pem (or client.pem) must
be provided with the soap ssl server context at the server side (or soap ssl client context at the client
side) together with the password you entered when generating the certificate using cert.sh to access
the file. These certificates must be present to grant authentication requests by peers. In addition,
the server.pem (and client.pem) include the host name of the machine on which the application
runs (e.g. localhost), so you need to generate new certificates when migrating a server (or client).

Finally, you need to generate Diffie-Helmann (DH) parameters for the server if you wish to use DH
instead of RSA. There are two options:

1. Set the dhfile parameter to the numeric DH prime length in bits required (for example ”1024”)
to let the engine generate DH parameters at initialization. This can be time consuming.

2. Provide a file name for the dhfile parameter of soap ssl server context. The file should be gener-
ated beforehand. To do so with the OpenSSL command line tool, use:

> openssl dhparam -outform PEM -out dh.pem 512

File dh512.pem is the output file and 512 is the number of bits used.

255

19.25 SSL Hardware Acceleration

You can specify a hardware engine to enable hardware support for cryptographic acceleration. This
can be done once in a server or client with the following statements:

static const char *engine = ”cswift”; /* engine name */
int main()
{

...
ENGINE *e;
if (!(e = ENGINE by id(engine)))

fprintf(stderr, ”Error finding engine %s\n”, engine);
else if (!ENGINE set default(e, ENGINE METHOD ALL))

fprintf(stderr, ”Error using engine %s\n”, engine);
...

The following table lists the names of the hardware and software engines:

Name
Description

openssl The default software engine for cryptographic operations
openbsd dev crypto OpenBSD supports kernel level cryptography
cswift CryptoSwift acceleration hardware
chil nCipher CHIL acceleration hardware
atalla Compaq Atalla acceleration hardware
nuron Nuron acceleration hardware
ubsec Broadcom uBSec acceleration hardware
aep Aep acceleration hardware
sureware SureWare acceleration hardware

19.26 SSL on Windows

Set the full path to libssl.lib and libcrypto.lib under the MSVC++ ”Projects” menu, then choose
”Link”: ”Object/Modules”. Please make sure libssl32.dll and libeay32.dll can be loaded by gSOAP
applications, thus they must be installed properly on the target machine.

If you’re using compilation settings such as /MTd then link to the correct libeay32MTd.lib and
ssleay32MTd.lib libraries.

Alternatively, you can use the WinInet interface available in the mod gsoap directory of the gSOAP
package. API instructions are included in the source.

19.27 Zlib Compression

To enable deflate and gzip compression with Zlib, install Zlib from http://www.zlib.org if not
already installed on your system. Compile stdsoap2.cpp (or stdsoap2.c) and all your sources that
include stdsoap2.h or soapH.h with compiler option -DWITH GZIP and link your code with the Zlib
library, e.g. -lz on Unix/Linux platforms.

256

The gzip compression is orthogonal to all transport encodings such as HTTP, SSL, DIME, and can
be used with other transport layers. You can even save and load compressed XML data to/from
files.

gSOAP supports two compression formats: deflate and gzip. The gzip format is used by default.
The gzip format has several benefits over deflate. Firstly, gSOAP can automatically detect gzip
compressed inbound messages, even without HTTP headers, by checking for the presence of a gzip
header in the message content. Secondly, gzip includes a CRC32 checksum to ensure messages
have been correctly received. Thirdly, gzip compressed content can be decompressed with other
compression software, so you can decompress XML data saved by gSOAP in gzip format.

Gzip compression is enabled by compiling the sources with -DWITH GZIP. To transmit gzip com-
pressed SOAP/XML data, set the output mode flags to SOAP ENC ZLIB. For example:

soap init(&soap);
...
soap set omode(&soap, SOAP ENC ZLIB); // enable Zlib’s gzip
if (soap call ns myMethod(&soap, . . .))
...
soap clr omode(&soap, SOAP ENC ZLIB); // disable Zlib’s gzip
...

This will send a compressed SOAP/XML request to a service, provided that Zlib is installed
and linked with the application and the -DWITH GZIP option was used to compile the sources.
Receiving compressed SOAP/XML over HTTP either in gzip or deflate formats is automatic. The
SOAP ENC ZLIB flag does not have to be set at the server side to accept compressed messages.
Reading and receiving gzip compressed SOAP/XML without HTTP headers (e.g. with other
transport protocols) is also automatic.

To control the level of compression for outbound messages, you can set the soap.z level to a value
between 1 and 9, where 1 is the best speed and 9 is the best compression (default is 6). For example

soap init(&soap);
...
soap set omode(&soap, SOAP ENC ZLIB);
soap.z level = 9; // best compression
...

To verify and monitor compression rates, you can use the values soap.z ratio in and soap.z ratio out.
These two float values lie between 0.0 and 1.0 and express the ratio of the compressed message
length over uncompressed message length.

soap call ns myMethod(&soap, . . .);
...
printf(”Compression ratio: %f%% (in) %f%% (out)\n”, 100*soap.z ratio out, 100*soap.z ratio in);
...

Note: lower ratios mean higher compression rates.

Compressed transfers require buffering the entire output message to determine HTTP message
length. This means that the SOAP IO STORE flag is automatically set when the SOAP ENC ZLIB flag

257

is set to send compressed messages. The use of HTTP chunking significantly reduces memory usage
and may speed up the transmission of compressed SOAP/XML messages. This is accomplished by
setting the SOAP IO CHUNK flag with SOAP ENC ZLIB for the output mode. However, some Web
servers do not accept HTTP chunked request messages (even when they return HTTP chunked
messages!). Stand-alone gSOAP services always accept chunked request messages.

To restrict the compression to the deflate format only, compile the sources with -DWITH ZLIB. This
limits compression and decompression to the deflate format. Only plain and deflated messages
can be exchanged, gzip is not supported with this option. Receiving gzip compressed content is
automatic, even in the absence of HTTP headers. Receiving deflate compressed content is not
automatic in the absence of HTTP headers and requires the flag SOAP ENC ZLIB to be set for the
input mode to decompress deflated data.

Caution: it is important that the WITH GZIP and WITH ZLIB macros MUST be consistently de-
fined to compile the sources, such as stdsoap2.cpp, soapC.cpp, soapClient.cpp, soapServer.cpp, and all
application sources that include stdsoap2.h or soapH.h. If the macros are not consistently used, the
application will crash due to a mismatches in the declaration and access of the gSOAP context.

19.28 Client-Side Cookie Support

Client-side cookie support is optional. To enable cookie support, compile all sources with option
-DWITH COOKIES, for example:

> c++ -DWITH COOKIES -o myclient stdsoap2.cpp soapC.cpp soapClient.cpp

or add the following line to stdsoap.h:

#define WITH COOKIES

Client-side cookie support is fully automatic. So just (re)compile stdsoap2.cpp with -DWITH COOKIES

to enable cookie-based session control in your client.

A database of cookies is kept and returned to the appropriate servers. Cookies are not automat-
ically saved to a file by a client. An example cookie file manager is included as an extras in the
distribution. You should explicitly remove all cookies before terminating a gSOAP context by
calling soap free cookies(soap) or by calling soap done(soap).

To avoid ”cookie storms” caused by malicious servers that return an unreasonable amount of
cookies, gSOAP clients/servers are restricted to a database size that the user can limit (32 cookies
by default), for example:

struct soap soap;
soap init(&soap);
soap.cookie max = 10;

The cookie database is a linked list pointed to by soap.cookies where each node is declared as:

struct soap cookie
{

258

char *name;
char *value;
char *domain;
char *path;
long expire; /* client-side: local time to expire; server-side: seconds to expire */
unsigned int version;
short secure;
short session; /* server-side */
short env; /* server-side: 1 = got cookie from client */
short modified; /* server-side: 1 = client cookie was modified */
struct soap cookie *next;
};

Since the cookie database is linked to a soap struct, each thread has a local cookie database in a
multi-threaded implementation.

19.29 Server-Side Cookie Support

Server-side cookie support is optional. To enable cookie support, compile all sources with option
-DWITH COOKIES, for example:

> c++ -DWITH COOKIES -o myserver ...

gSOAP provides the following cookie API for server-side cookie session control:

259

Function
struct soap cookie *soap set cookie(struct soap *soap, const char *name, const char *value, const
char *domain, const char *path);
Add a cookie to the database with name name and value value. domain and path may be NULL to
use the current domain and path given by soap cookie domain and soap cookie path. If successful,
returns pointer to a cookie node in the linked list, or NULL otherwise.
struct soap cookie *soap cookie(struct soap *soap, const char *name, const char *domain, const
char *path);
Find a cookie in the database with name name and value value. domain and path may be NULL to
use the current domain and path given by soap cookie domain and soap cookie path. If successful,
returns pointer to a cookie node in the linked list, or NULL otherwise.
char *soap cookie value(struct soap *soap, const char *name, const char *domain, const char *path);
Get value of a cookie in the database with name name. domain and path may be NULL to use the
current domain and path given by soap cookie domain and soap cookie path. If successful, returns
the string pointer to the value, or NULL otherwise.
long soap cookie expire(struct soap *soap, const char *name, const char *domain, const char *path);
Get expiration value of the cookie in the database with name name (in seconds). domain and path
may be NULL to use the current domain and path given by soap cookie domain and soap cookie path.
Returns the expiration value, or -1 if cookie does not exist.
int soap set cookie expire(struct soap *soap, const char *name, long expire, const char *domain,
const char *path);
Set expiration value expire of the cookie in the database with name name (in seconds). domain
and path may be NULL to use the current domain and path given by soap cookie domain and
soap cookie path. If successful, returns SOAP OK, or SOAP EOF otherwise.
int soap set cookie session(struct soap *soap, const char *name, const char *domain, const char
*path);
Set cookie in the database with name name to be a session cookie. This means that the cookie will be
returned to the client. (Only cookies that are modified are returned to the client). domain and path
may be NULL to use the current domain and path given by soap cookie domain and soap cookie path.
If successful, returns SOAP OK, or SOAP EOF otherwise.
int soap clr cookie session(struct soap *soap, const char *name, const char *domain, const char
*path);
Clear cookie in the database with name name to be a session cookie. domain and path may be NULL
to use the current domain and path given by soap cookie domain and soap cookie path. If successful,
returns SOAP OK, or SOAP EOF otherwise.
void soap clr cookie(struct soap *soap, const char *name, const char *domain, const char *path);
Remove cookie from the database with name name. domain and path may be NULL to use the
current domain and path given by soap cookie domain and soap cookie path.
int soap getenv cookies(struct soap *soap);
Initializes cookie database by reading the ’HTTP COOKIE’ environment variable. This provides a
means for a CGI application to read cookies send by a client. If successful, returns SOAP OK, or
SOAP EOF otherwise.
void soap free cookies(struct soap *soap);
Release cookie database.

The following global variables are used to define the current domain and path:

Attribute value
const char *cookie domain MUST be set to the domain (host) of the service
const char *cookie path MAY be set to the default path to the service
int cookie max maximum cookie database size (default=32)

260

The cookie path value is used to filter cookies intended for this service according to the path prefix
rules outlined in RFC2109.

The following example server adopts cookies for session control:

int main()
{

struct soap soap;
int m, s;
soap init(&soap);
soap.cookie domain = ”...”;
soap.cookie path = ”/”; // the path which is used to filter/set cookies with this destination
if (argc < 2)
{

soap getenv cookies(&soap); // CGI app: grab cookies from ’HTTP COOKIE’ env var
soap serve(&soap);

}
else
{

m = soap bind(&soap, NULL, atoi(argv[1]), 100);
if (m < 0)

exit(1);
for (int i = 1; ; i++)
{

s = soap accept(&soap);
if (s < 0)

exit(1);
soap serve(&soap);
soap end(&soap); // clean up
soap free cookies(&soap); // remove all old cookies from database so no interference occurs

with the arrival of new cookies
}

}
return 0;
}
int ck demo(struct soap *soap, ...)
{

int n;
const char *s;
s = soap cookie value(soap, ”demo”, NULL, NULL); // cookie returned by client?
if (!s)

s = ”init-value”; // no: set initial cookie value
else

... // modify ’s’ to reflect session control
soap set cookie(soap, ”demo”, s, NULL, NULL);
soap set cookie expire(soap, ”demo”, 5, NULL, NULL); // cookie may expire at client-side in 5

seconds
return SOAP OK;
}

261

19.30 Connecting Clients Through Proxy Servers

When a client needs to connect to a Web Service through a proxy server, set the soap.proxy host

string and soap.proxy port integer attributes of the current soap runtime context to the proxy’s host
name and port, respectively. For example:

struct soap soap;
soap init(&soap);
soap.proxy host = ”proxyhostname”;
soap.proxy port = 8080;
if (soap call ns method(&soap, ”http://host:port/path”, ”action”, ...))

soap print fault(&soap, stderr);
else

...

The attributes soap.proxy host and soap.proxy port keep their values through a sequence of service
operation calls, so they only need to be set once.

When X-Forwarded-For headers are returned by the proxy, the header can be accessed in the
soap.proxy from string.

19.31 FastCGI Support

To enable FastCGI support, install FastCGI and compile all sources (including your application
sources that use stdsoap2.h) with option -DWITH FASTCGI or add

#define WITH FASTCGI

to stdsoap2.h.

19.32 How to Create gSOAP Applications With a Small Memory Footprint

To compile gSOAP applications intended for small memory devices, you may want to remove all
non-essential features that consume precious code and data space. To do this, compile the gSOAP
sources with -DWITH LEAN (i.e. #define WITH LEAN) to remove many non-essential features. The
features that will be disabled are:

• No I/O timeouts. Note that many socket operations already obey some form of timeout
handling, such as a connect timeout for example.

• No UDP support

• No HTTP keep alive

• No HTTP cookies

• No HTTP authentication

• No HTTP chunked output (but input is OK)

262

• No HTTP compressed output (but input is OK when compiled with WITH GZIP)

• No send/recv timeouts

• No socket flags (no soap.socket flag, soap.connect flag, soap.bind flag, soap.accept flag)

• No canonical XML output

• No logging

• Limited TCP/IP and HTTP error diagnostic messages

• No support for time t serialization

• No support for LONG64/ULONG64 serialization (use typedef long xsd long)

• No support for hexBinary serialization (remap hexBinary to strings by adding a remap entry to
typemap.dat)

Use -DWITH LEANER to make the executable even smaller by removing DIME and MIME at-
tachment handling, wchar t* serialization, and support for XML DOM operations. Note that
DIME/MIME attachments are not essential to achieve SOAP/XML interoperability. DIME at-
tachments are a convenient way to exchange non-text-based (i.e. binary) content, but are not
required for basic SOAP/XML interoperability. Attachment requirements are predictable. That is,
applications won’t suddenly decide to use DIME or MIME instead of XML to exchange content.

It is safe to try to compile your application with -DWITH LEAN, provided that your application does
not rely on I/O timeouts. When no linkage error occurs in the compilation process, it is safe to
assume that your application will run just fine.

19.33 How to Eliminate BSD Socket Library Linkage

The stdsoap2.c and stdsoap2.cpp gSOAP runtime libraries should be linked with a BSD socket library
in the project build, e.g. winsock2 for Win32. To eliminate the need to link a socket library, you can
compile stdsoap2.c (for C) and stdsoap2.cpp (for C++) with the -DWITH NOIO macro set (i.e. #define

WITH NOIO). This eliminates the dependency on the BSD socket API, IO streams, FILE type, and
errno.

As a consequence, you MUST define callbacks to replace the missing socket stack. To do so, add
to your code the following definitions:

struct soap soap;
soap init(&soap);
/* fsend is used to transmit data in blocks */
soap.fsend = my send;
/* frecv is used to receive data in blocks */
soap.frecv = my recv;
/* fopen is used to connect */
soap.fopen = my tcp connect;
/* fclose is used to disconnect */

263

soap.fclose = my tcp disconnect;
/* fclosesocket is used only to close the master socket in a server upon soap done() */
soap.fclosesocket = my tcp closesocket;
/* fshutdownsocket is used after completing a send operation to send TCP FIN */
soap.fshutdownsocket = my tcp shutdownsocket;
/* setting fpoll is optional, leave it NULL to omit polling the server */
soap.fpoll = my poll;
/* faccept is used only by a server application */
soap.faccept = my accept;

These functions are supposed to provide a (minimal) transport stack. See Section 19.7 for more
details on the use of these callbacks. All callback function pointers should be non-NULL, except
fpoll.

You cannot use soap print fault and soap print fault location to print error diagnostics. Instead, the
value of soap.error, which contains the gSOAP error code, can be used to determine the cause of a
fault.

19.34 How to Combine Multiple Client and Server Implementations into one
Executable

The wsdl2h tool can be used to import multiple WSDLs and schemas at once. The service definitions
are combined in one header file to be parsed by soapcpp2. It is important to assign namespace prefixes
to namespace URIs using the typemap.dat file. Otherwise, wsdl2h will assign namespace prefixes ns1,
ns2, and so on to the service operations and schema types. Thus, any change to a WSDL or schema
may result in a new prefix assignment. For more details, please see Section 8.2.

Another approach to combine multiple client and service applications into one executable is by
using C++ namespaces to structurally separate the definitions or by creating C libraries for the
client/server objects as explained in subsequent sections. This is automated with wsdl2h option -q.

Both approaches are demonstrated by example in the gSOAP distribution, the samples/link (C only)
and samples/link++ (C++ with C++ namespaces) examples.

19.35 How to Build a Client or Server in a C++ Code Namespace

You can use a C++ code namespace of your choice in your header file to build a client or server in
that code namespace. In this way, you can create multiple clients and servers that can be combined
and linked together without conflicts, which is explained in more detail in the next section (which
also shows an example combining two client libraries defined in two C++ code namespaces).

Use wsdl2h option -qname to generate definitions in the C++ name namespace. This option can
also be used in combination with C++ proxy and server object generation, using soapcpp2 options
-i (or -j) and -p.

At most one namespace can be defined for the entire gSOAP header file. The code namespace
MUST completely encapsulate the entire contents of the header file:

namespace myNamespaceName {

264

... gSOAP header file contents ...
}

When compiling this header file with the gSOAP soapcpp2 compiler, all type definitions, the
(de)serializers for these types, and the stub/skeleton codes will be placed in this namespace. The
XML namespace mapping table (saved in a .nsmap file) will not be placed in the code namespace
to allow it to be linked as a global object. You can use option -n to create local XML namespace
tables, see Section 9.1 (but remember that you explicitly need to initialize the soap.namespaces to
point to a table at run time). The generated files are prefixed with the code namespace name
instead of the usual soap file name prefix to enable multiple client/server codes to be build in the
same project directory (a code namespace automatically sets the -p compiler option, see Section 9.1
for options).

Because the SOAP Header and Fault serialization codes will also be placed in the namespace, they
cannot be called from the stdsoap2.cpp run time library code and are therefore rendered unusable.
Therefore, these serializers are not compiled at all (enforced with #define WITH NOGLOBAL). To add
SOAP Header and Fault serializers, you MUST compile them separately as follows. First, create a
new header file env.h with the SOAP Header and Fault definitions. You can leave this header file
empty if you want to use the default SOAP Header and Fault. Then compile this header file with:

> soapcpp2 -penv env.h

The generated envC.cpp file holds the SOAP Header and Fault serializers and you can link this file
with your client or server application.

19.36 How to Create Client/Server Libraries

The gSOAP soapcpp2 compiler produces soapClientLib.cpp and soapServerLib.cpp codes that are specif-
ically intended for building static or dynamic client/server libraries. These codes export the stubs
and skeletons, but keep all marshaling code (i.e. parameter serializers and deserializers) local (i.e. as
static functions) to avoid link symbol conflicts when combining multiple clients and/or servers into
one executable. Note that it is far simpler to use the wsdl2h tool on multiple WSDL files to generate
a header file that combines all service definitions. However, the approach presented in this section
is useful when creating (dynamic) libraries for client and server objects, such as DLLs as described
in Section 19.37.

Do not link soapClientLib.cpp or soapServerLib.cpp together with soapC.cpp, soapClient.cpp, and soapServer.cpp.
The library versions already include all of the necessary definitions.

To build multiple libraries in the same project directory, you can define a C++ code namespace in
your header file (see Section 19.35) or you can use soapcpp2 with option -p to rename the generated
soapClientLib.cpp and soapServerLib.cpp (and associated) files. The -p option specifies the file name
prefix to replace the soap prefix. The libraries don’t have to be C++ codes. You can use option -c to
generate C code. A clean separation of libraries can also be achieved with C++ code namespaces,
see Section 19.35.

The library codes do not define SOAP Header and Fault serializers. You MUST add SOAP Header
and Fault serializers to your application, which are compiled separately as follows. First, create a

265

new header file env.h with the SOAP Header and Fault definitions. You can leave this header file
empty if you want to use the default SOAP Header and Fault. Then compile this header file with:

> soapcpp2 -penv env.h

The generated envC.cpp file holds the SOAP Header and Fault serializers and you can create a
(dynamic) library for it to link this code with your client or server application.

You MUST compile the stdsoap2.cpp library using -DWITH NONAMESPACES:

> c++ -DWITH NONAMESPACES -c stdsoap2.cpp

This omits the reference to the global namespaces table, which is nowhere to be defined since we
will use XML namespaces for each client/service separately. Therefore, you MUST explicitly set
the namespaces value of the gSOAP context in your code every time after initialization of the soap
struct with the soap set namespaces(struct soap*, const struct Namespace*) function.

For example, suppose we have two clients defined in header files client1.h and client2.h. We first
generate the envH.h file for the SOAP Header and Fault definitions:

> soapcpp2 -c -penv env.h

Then we generate the code for client1 and client2:

> soapcpp2 -c -n -pmyClient1 client1.h
> soapcpp2 -c -n -pmyClient2 client2.h

This generates myClient1ClientLib.c and myClient2ClientLib.c (among many other files). These two files
should be compiled and linked with your application. The source code of your application should
include the generated envH.h, myClient1H.h, myClient2.h files and myClient1.nsmap, myClient2.nsmap files:

#include ”envH.h” // include this file first!
#include ”myClient1H.h” // include client 1 stubs
#include ”myClient2H.h” // include client 2 stubs
...
#include ”myClient1H.nsmap” // include client 1 nsmap
#include ”myClient2H.nsmap” // include client 2 nsmap
...
soap init(&soap);
soap set namespaces(&soap, myClient1 namespaces);
... make Client 1 invocations ...
...
soap set namespaces(&soap, myClient2 namespaces);
... make Client 2 invocations ...

It is important to use soapcpp2 option -n, see Section 9.1, to rename the namespace tables so we
can include them all without running into redefinitions.

Note: Link conflicts may still occur in the unlikely situation that identical service operation names
are defined in two or more client stubs or server skeletons when these methods share the same
XML namespace prefix. You may have to use C++ code namespaces to avoid these link conflicts
or rename the namespace prefixes used by the service operation defined in the header files.

266

19.36.1 C++ Clients Example

As an example we will build a Delayed Stock Quote client library and a Currency Exchange Rate
client library.

First, we create an empty header file env.h (which may contain optional SOAP Header and Fault
definitions), and compile it as follows:

> soapcpp2 -penv env.h
> c++ -c envC.cpp

We also compile stdsoap2.cpp without namespaces:

> c++ -c -DWITH NONAMESPACES stdsoap2.cpp

Note: when you forget to use -DWITH NONAMESPACES you will get an unresolved link error for the
global namespaces table. You can define a dummy table to avoid having to recompile stdsoap2.cpp.

Second, we create the Delayed Stock Quote header file specification, which may be obtained using
the WSDL importer. If you want to use C++ namespaces then you need to manually add the
namespace declaration to the generated header file:

namespace quote {
//gsoap ns service name: Service
//gsoap ns service style: rpc
//gsoap ns service encoding: encoded
//gsoap ns service location: http://services.xmethods.net/soap
//gsoap ns schema namespace: urn:xmethods-delayed-quotes
//gsoap ns service method-action: getQuote ””
int ns getQuote(char *symbol, float &Result);
}

We then compile it as a library and we use option -n to rename the namespace table to avoid link
conflicts later:

> soapcpp2 -n quote.h
> c++ -c quoteClientLib.cpp

If you don’t want to use a C++ code namespace, you should compile quote.h “as is” with soapcpp2
option -pquote:

> soapcpp2 -n -pquote quote.h
> c++ -c quoteClientLib.cpp

Third, we create the Currency Exchange Rate header file specification:

namespace rate {
//gsoap ns service name: Service
//gsoap ns service style: rpc

267

//gsoap ns service encoding: encoded
//gsoap ns service location: http://services.xmethods.net/soap
//gsoap ns schema namespace: urn:xmethods-CurrencyExchange
//gsoap ns service method-action: getRate ””
int ns getRate(char *country1, char *country2, float &Result);
}

Similar to the Quote example above, we compile it as a library and we use option -n to rename the
namespace table to avoid link conflicts:

> soapcpp2 -n rate.h

Fourth, we consider linking the libraries to the main program. The main program can import the
quoteServiceProxy.h and rateServiceProxy.h files to obtain client proxies to invoke the services. The
proxy implementations are defined in quoteClient.cpp. The -n option also affects the generation of
the C++ proxy codes to ensure that the gSOAP context is properly initialized with the appropriate
namespace table (so you don’t have to initialize explicitly – this feature is only available with C++
proxy and server object classes).

#include ”quoteServiceProxy.h” // get quote Service proxy
#include ”rateServiceProxy.h” // get rate Service proxy
#include ”quote.nsmap” // get quote namespace bindings
#include ”rate.nsmap” // get rate namespace bindings
int main(int argc, char *argv[])
{

if (argc <= 1)
{

std::cerr << ”Usage: main ticker [currency]” << std::endl
exit(0);

}
quote::Service quote;
float q;
if (quote.getQuote(argv[1], q)) // get quote

soap print fault(quote.soap, stderr);
else
{

if (argc > 2)
{

rate::Service rate;
float r;
if (rate.getRate(”us”, argv[2], r)) // get rate in US dollars

soap print fault(rate.soap, stderr);
else

q *= r; // convert the quote
}
std::cout << argv[1] << ”: ” << q << std::endl;

}
return 0;
}

268

Compile and link this application with stdsoap2.o, envC.o, quoteServerProxy.o, and rateServerProxy.o.

To compile and link a server object is very similar. For example, assume that we need to implement
a calculator service and we want to create a library for it.

namespace calc {
//gsoap ns service name: Service
//gsoap ns service style: rpc
//gsoap ns service encoding: encoded
//gsoap ns service location: http://www.cs.fsu.edu/˜engelen/calc.cgi
//gsoap ns schema namespace: urn:calc
int ns add(double a, double b, double &result);
int ns sub(double a, double b, double &result);
int ns mul(double a, double b, double &result);
int ns div(double a, double b, double &result);
}

We compile this with:

> soapcpp2 -n calc.h

The effect of the -n option is that it creates local namespace tables, and a modified calcServiceObject.h

server class definitions that properly initialize the gSOAP run time with the table.

#include ”calcServiceObject.h” // get Service object
#include ”calc.nsmap” // get calc namespace bindings
...
calc::Service calc;
calc.serve(); // calls request dispatcher to invoke one of the functions below
...
int calc::Service::add(double a, double b, double &result);
{ result = a + b; returnSOAP OK; }
int calc::Service::sub(double a, double b, double &result);
{ result = a - b; returnSOAP OK; }
int calc::Service::mul(double a, double b, double &result);
{ result = a * b; returnSOAP OK; }
int calc::Service::div(double a, double b, double &result);
{ result = a / b; returnSOAP OK; }

In fact, the calc::Service class is derived from the struct soap. So the context is available as this, which
can be passed to all gSOAP functions that require a soap struct context.

The example above serves requests over stdin/out. Use the bind and accept calls to create a
stand-alone server to service inbound requests over sockets, see 7.2.3.

19.36.2 C Clients Example

This is the same example as above, but the clients are build with pure C.

269

We create a env.h that contains the joint SOAP Header and SOAP Fault definitions. You may have
to copy-paste these from the other header files. Then, compile it as follows:

> soapcpp2 -c -penv env.h
> cc -c envC.c

We also compile stdsoap2.c without namespaces:

> cc -c -DWITH NONAMESPACES stdsoap2.c

Second, we create the Delayed Stock Quote header file specification, which may be obtained using
the WSDL importer.

//gsoap ns service name: Service
//gsoap ns service style: rpc
//gsoap ns service encoding: encoded
//gsoap ns service location: http://services.xmethods.net/soap
//gsoap ns schema namespace: urn:xmethods-delayed-quotes
//gsoap ns service method-action: getQuote ””
int ns getQuote(char *symbol, float *Result);

We compile it as a library and we use options -n and -p to rename the namespace table to avoid
link conflicts:

> soapcpp2 -c -n -pquote quote.h
> cc -c quoteClientLib.c

Third, we create the Currency Exchange Rate header file specification:

//gsoap ns service name: Service
//gsoap ns service style: rpc
//gsoap ns service encoding: encoded
//gsoap ns service location: http://services.xmethods.net/soap
//gsoap ns schema namespace: urn:xmethods-CurrencyExchange
//gsoap ns service method-action: getRate ””
int ns getRate(char *country1, char *country2, float *Result);

We compile it as a library and we use options -n and -p to rename the namespace table to avoid
link conflicts:

> soapcpp2 -c -n -prate rate.h
> cc -c rateClientLib.c

The main program is:

#include ”quoteStub.h” // get quote Service stub
#include ”rateStub.h” // get rate Service stub
#include ”quote.nsmap” // get quote namespace bindings

270

#include ”rate.nsmap” // get rate namespace bindings
int main(int argc, char *argv[])
{

if (argc <= 1)
{

fprintf(stderr, ”Usage: main ticker [currency]\n”);
exit(0);

}
struct soap soap;
float q;
soap init(&soap);
soap set namespaces(&soap, quote namespaces);
if (soap call ns getQuote(&soap, ”http://services.xmethods.net/soap”, ””, argv[1], &q)) // get

quote
soap print fault(&soap, stderr);

else
{

if (argc > 2)
{

soap set namespaces(&soap, rate namespaces);
float r;
if (soap call ns getRate(&soap, ”http://services.xmethods.net/soap”, ””, ”us”, argv[2],

&r)) // get rate in US dollars
soap print fault(&soap, stderr);

else
q *= r; // convert the quote

}
printf(”%s: %f \n”, argv[1], q);

}
return 0;
}

Compile and link this application with stdsoap2.o, envC.o, quoteClientLib.o, and rateClientLib.o.

To compile and link a server library is very similar. Assuming that the server is named “calc”
(as specified with options -n and -p), the application needs to include the calcStub.h file, link the
calcServerLib.o file, and call calc serve(&soap) function at run time.

19.36.3 C Services Chaining Example

We build a C application for multiple services served on one port.

We create a env.h that contains the joint SOAP Header and SOAP Fault definitions. You may have
to copy-paste these from the other header files. Then, compile it as follows:

> soapcpp2 -c -penv env.h
> cc -c envC.c

We also compile stdsoap2.c without namespaces:

271

> cc -c -DWITH NONAMESPACES stdsoap2.c

Say we have a service definition in quote.h. We compile it as a library and we use options -n and -p

to rename the namespace table to avoid link conflicts:

> soapcpp2 -c -n -pquote quote.h
> cc -c quoteClientLib.c

We do the same for a service definition in rate.h:

> soapcpp2 -c -n -prate rate.h
> cc -c rateClientLib.c

To serve both the quote and rate services on the same port, we chain the service dispatchers as
follows:

struct soap *soap = soap new();
soap bind(soap, NULL, 8080, 100);
soap accept(soap);
if (soap begin serve(soap))

soap send fault(&abc); // send fault to client
else if (quote serve request(soap) == SOAP NO METHOD)
{

if (rate serve request(soap)) soap send fault(soap); // send fault to client
}
else if (soap.error)

soap send fault(soap); // send fault to client
soap destroy(soap);
soap end(soap);
soap free(soap);

This chaining can be arbitrarily deep. When the previous request fails with a SOAP NO METHOD

then next request dispatcher can be tried.

The server should also define the service operations:

int ns getQuote(struct soap *soap, char *symbol, float *Result);
{ *Result = ... ;

return SOAP OK;
}
int ns getRate(struct soap *soap, char *country1, char *country2, float *Result);
{ *Result = ... ;

return SOAP OK;
}

19.37 How to Create DLLs

19.37.1 Create the Base stdsoap2.dll

First, create a new header file env.h with the SOAP Header and Fault definitions. You can leave
this header file empty if you want to use the default SOAP Header and Fault. Then compile this
header file with:

272

> soapcpp2 -penv env.h

The generated envC.cpp file holds the SOAP Header and Fault serializers, which need to be part of
the base library functions.

The next step is to create stdsoap2.dll which consists of the file stdsoap2.cpp and envC.cpp. This DLL
contains all common functions needed for all other clients and servers based on gSOAP. Compile
envC.cpp and stdsoap2.cpp into stdsoap2.dll using the C++ compiler option -DWITH NONAMESPACES

and the MSVC Pre-Processor definitions SOAP FMAC1= declspec(dllexport) and SOAP FMAC3= declspec(dllexport)

(or you can compile with -DWITH SOAPDEFS H and put the macro definitions in soapdefs.h). This
exports all functions which are preceded by the macro SOAP FMAC1 in the soapcpp2.cpp source file
and macro SOAP FMAC3 in the envC.cpp source file.

19.37.2 Creating Client and Server DLLs

Compile the soapClientLib.cpp and soapServerLib.cpp sources as DLLs by using the MSVC Pre-Processor
definitions SOAP FMAC5= declspec(dllexport) and SOAP CMAC= declspec(dllexport), and by using the
C++ compiler option -DWITH NONAMESPACES. This DLL links to stdsoap2.dll.

To create multiple DLLs in the same project directory, you SHOULD use option -p to rename the
generated soapClientLib.cpp and soapServerLib.cpp (and associated) files. The -p option specifies the
file name prefix to replace the soap prefix. A clean separation of libraries can also be achieved with
C++ namespaces, see Section 19.35.

Unless you use the client proxy and server object classes (soapXProxy.h and soapXObject.h where X

is the name of the service), all client and server applications MUST explicitly set the namespaces
value of the gSOAP context:

soap init(&soap);
soap set namespaces(&soap, namespaces);

where the namespaces[] table should be defined in the client/server source. These tables are generated
in the .nsmap files. You can rename the tables using option -n, see Section 9.1.

19.38 gSOAP Plug-ins

The gSOAP plug-in feature enables a convenient extension mechanism of gSOAP capabilities.
When the plug-in registers with gSOAP, it has full access to the run-time settings and the gSOAP
function callbacks. Upon registry, the plug-in’s local data is associated with the gSOAP run-time.
By overriding gSOAP’s function callbacks with the plug-in’s function callbacks, the plug-in can
extend gSOAP’s capabilities. The local plug-in data can be accessed through a lookup function,
usually invoked within a callback function to access the plug-in data. The registry and lookup
functions are:

int soap register plugin arg(struct soap *soap, int (*fcreate)(struct soap *soap, struct soap plugin
*p, void *arg), void *arg)
void* soap lookup plugin(struct soap*, const char*);

273

Other functions that deal with plug-ins are:

int soap copy(struct soap *soap);
void soap done(struct soap *soap);

The soap copy function returns a new dynamically allocated gSOAP context that is a copy of another,
such that no data is shared between the copy and the original context. The soap copy function
invokes the plug-in copy callbacks to copy the plug-ins’ local data. The soap copy function returns
a gSOAP error code or SOAP OK. The soap done function de-registers all plugin-ins, so this function
should be called to cleanly terminate a gSOAP run-time context.

An example will be used to illustrate these functions. This example overrides the send and receive
callbacks to copy all messages that are sent and received to the terminal (stderr).

First, we write a header file plugin.h to define the local plug-in data structure(s) and we define a
global name to identify the plug-in:

#include ”stdsoap2.h”
#define PLUGIN ID ”PLUGIN-1.0” // some name to identify plugin
struct plugin data // local plugin data
{

int (*fsend)(struct soap*, const char*, size t); // to save and use send callback
size t (*frecv)(struct soap*, char*, size t); // to save and use recv callback
};
int plugin(struct soap *soap, struct soap plugin *plugin, void *arg);

Then, we write the plugin registry function and the callbacks:

#include ”plugin.h”
static const char plugin id[] = PLUGIN ID; // the plugin id
static int plugin init(struct soap *soap, struct plugin data *data);
static int plugin copy(struct soap *soap, struct soap plugin *dst, struct soap plugin *src);
static void plugin delete(struct soap *soap, struct soap plugin *p);
static int plugin send(struct soap *soap, const char *buf, size t len);
static size t plugin recv(struct soap *soap, char *buf, size t len);
// the registry function:
int plugin(struct soap *soap, struct soap plugin *p, void *arg)
{

p->id = plugin id;
p->data = (void*)malloc(sizeof(struct plugin data));
p->fcopy = plugin copy; /* optional: when set the plugin must copy its local data */
p->fdelete = plugin delete;
if (p->data)

if (plugin init(soap, (struct plugin data*)p->data))
{

free(p->data); // error: could not init
return SOAP EOM; // return error

}
return SOAP OK;
}
static int plugin init(struct soap *soap, struct plugin data *data)

274

{
data->fsend = soap->fsend; // save old recv callback
data->frecv = soap->frecv; // save old send callback
soap->fsend = plugin send; // replace send callback with new
soap->frecv = plugin recv; // replace recv callback with new
return SOAP OK;
}
// copy plugin data, called by soap copy() // This is important: we need a deep copy to avoid data
sharing by two run-time contexts
static int plugin copy(struct soap *soap, struct soap plugin *dst, struct soap plugin *src)
{

if (!(dst->data = (struct plugin data*)malloc(sizeof(struct plugin data))))
return SOAP EOM;

*dst->data = *src->data;
return SOAP OK;
}
// plugin deletion, called by soap done()
static void plugin delete(struct soap *soap, struct soap plugin *p)
{ free(p->data); // free allocated plugin data
}
// the new send callback
static int plugin send(struct soap *soap, const char *buf, size t len)
{

struct plugin data *data = (struct plugin data*)soap lookup plugin(soap, plugin id); // fetch
plugin’s local data

fwrite(buf, len, 1, stderr); // write message to stderr
return data->fsend(soap, buf, len); // pass data on to old send callback
}
// the new receive callback
static size t plugin recv(struct soap *soap, char *buf, size t len)
{

struct plugin data *data = (struct plugin data*)soap lookup plugin(soap, plugin id); // fetch
plugin’s local data

size t res = data->frecv(soap, buf, len); // get data from old recv callback
fwrite(buf, res, 1, stderr);
return res;
}

The fdelete callback of struct soap plugin MUST be set to register the plugin. It is the responsibility
of the plug-in to handle registry (init), copy, and deletion of the plug-in data and callbacks.

A plugin is copied with the soap copy() call. This function copies a soap struct and the chain of
plugins. It is up to the plugin implementation to share the plugin data or not:

1. if the fcopy() callback is set by the plugin initialization, this callback will be called to allow
the plugin to copy its local data upon a soap copy() call. When soap done() is called on the
soap struct copy, the fdelete() callback is called for deallocation and cleanup of the local data.

2. if the fcopy() callback is not set, then the plugin data will be shared (i.e. the data pointer
points to the same address). The fdelete() callback will not be called upon a soap done() on a
copy of the soap struct. The fdelete() callback will be called for the original soap struct with

275

which the plugin was registered.

The example plug-in should be used as follows:

struct soap soap;
soap init(&soap);
soap register plugin(&soap, plugin);
...
soap done(&soap);

Note: soap register plugin(...) is an alias for soap register plugin arg(..., NULL). That is, it passes NULL
as an argument to plug-in’s registry callback.

A number of example plug-ins are included in the gSOAP package’s plugin directory. Some of these
plug-ins are discussed.

19.38.1 The Message Logging and Statistics Plug-in

The message logging and access statistics plug-in can be used to selectively log inbound and out-
bound messages to a file or stream. It also keeps access statistics to log the total number of bytes
sent and received.

To use the plug-in, compile and link your application with logging.c located in the plugin directory of
the package. To enable the plug-in in your code, register the plug-in and set the streams as follows:

#include ”logging.h”
size t bytes in;
size t bytes out;
...
if (soap register plugin(&soap, logging))

soap print fault(&soap, stderr); // failed to register
...
soap set logging inbound(&soap, stdout);
soap set logging outbound(&soap, stdout);
... process messages ...
soap set logging inbound(&soap, NULL); // disable logging
soap set logging outbound(&soap, NULL); // disable logging
soap get logging stats(&soap, &bytes out, &bytes in);

If you use soap copy to copy the soap struct with the plug-in, the plug-in’s data will be shared by the
copy. Therefore, the statistics are not 100% guaranteed to be accurate for multi-threaded services
since race conditions on the counters may occur. Mutex is not used to update the counters to avoid
introducing expensive synchronization points. If 100% server-side accuracy is required, add mutex
at the points indicated in the logging.c code.

19.38.2 RESTful Interface: The HTTP GET Plug-in

Client-side and server-side use of RESTful HTTP GET operations are supported with the HTTP
GET plug-in plugin/httpget.c. The HTTP GET plug-in allows your server to handle RESTful HTTP

276

GET requests and at the same time still serve SOAP-based POST requests. The plug-in provides
support to client applications to issue HTTP GET operations to a server.

Note that HTTP GET requests can also be handled at the server side with the fget callback, see
Section 19.7. However, the HTTP GET plug-in also keeps statistics on the number of successful
POST and GET exchanges and failed operations (HTTP faults, SOAP Faults, etc.). It also keeps
hit histograms accumulated for up to a year of runtime.

To use the plug-in, compile and link your application with httpget.c located in the plugin directory
of the package. To enable the plug-in in your code, register the plug-in with your HTTP GET
handler function as follows:

#include ”httpget.h”
...
if (soap register plugin arg(&soap, httpget, (void*)my http get handler))

soap print fault(&soap, stderr); // failed to register
...
struct http get data *httpgetdata;
httpgetdata = (struct http get data*)soap lookup plugin(&soap, http get id);
if (!httpgetdata)

... // if the plug-in registered OK, there is certainly data but can’t hurt to check
... process messages ...
size t get ok = httpgetdata->stat get;
size t post ok = httpgetdata->stat post;
size t errors = httpgetdata->stat fail;
...
time t now = time(NULL);
struct tm *T;
T = localtime(&now);
size t hitsthisminute = httpgetdata->min[T->tm min];
size t hitsthishour = httpgetdata->hour[T->tm hour];
size t hitstoday = httpgetdata->day[T->tm yday];

An HTTP GET handler can simply produce some HTML content, or any other type of content by
sending data:

int my http get handler(struct *soap)
{

soap->http content = ”text/html”;
soap response(soap, SOAP FILE);
soap send(soap, ”¡html¿Hello¡/html¿”);
soap end send(soap);
return SOAP OK; // return SOAP OK or HTTP error code, e.g. 404
}

If you use soap copy to copy the soap struct with the plug-in, the plug-in’s data will be shared by the
copy. Therefore, the statistics are not 100% guaranteed to be accurate for multi-threaded services
since race conditions on the counters may occur. Mutex is not used to update the counters to avoid
introducing expensive synchronization points. If 100% server-side accuracy is required, add mutex
at the points indicated in the httpget.c code.

277

The client-side use of HTTP GET is provided by the soap get connect operation. To receive a
SOAP/XML (response) message ns:methodResponse, use:

#include ”httpget.h”
...
soap register plugin(&soap, http get);
...
if (soap get connect(&soap, endpoint, action))

... connect error ...
else if (soap recv ns methodResponse(&soap, ... params ...))

... error ...
else

... ok ...
soap destroy(&soap);
soap end(&soap);
soap done(&soap);

To receive any HTTP Body data into a buffer, use:

#include ”httpget.h”
...
char *response = NULL;
soap register plugin(&soap, http get);
...
if (soap get connect(&soap, endpoint, NULL))

... connect error ...
else if (soap begin recv(&soap))

... error ...
else

response = soap get http body(&soap);
soap end recv(&soap);
... use the ’response’ string (NULL indicates no body or error)
soap destroy(&soap);
soap end(&soap);
soap done(&soap);

19.38.3 RESTful Interface: The HTTP POST Plug-in

Client-side and server-side use of RESTful HTTP POST, PUT, and DELETE operations are sup-
ported with the HTTP POST plug-in plugin/httppost.c.

The HTTP POST plug-in allows your server to handle RESTful HTTP POST requests and at the
same time still serve SOAP-based POST requests. The plug-in also provides support for client
applications to issue HTTP POST operations to a server.

To simplify the server-side handling of POST requests, handlers can be associated with media
types:

struct http post handlers my handlers[] =
{ { ”image/jpg”, jpeg handler },
{ ”image/ *”, image handler },

278

{ ”text/html”, html handler },
{ ”text/ *”, text handler },
{ ”text/ *;*”, text handler },
{ ”POST”, generic POST handler },
{ ”PUT”, generic PUT handler },
{ ”DELETE”, generic DELETE handler },
{ NULL }
};

Note that ’*’ can be used as a wildcard and some media types may have optional parameters (after
’;’). The handlers are functions that will be invoked when a POSTed request message matching
media type is send to the server.

An example image handler that checks the specific image type:

int image handler(struct soap *soap)
{ const char *buf;

size t len;
// if necessary, check type in soap-¿http content
if (soap-¿http content && !soap tag cmp(soap-¿http content, ”image/gif”)

return 404; // HTTP error 404
if (soap http body(soap, &buf, &len) != SOAP OK)

return soap-¿error;
// ... now process image in buf
// reply with empty HTTP OK response:
soap response(soap, SOAP OK);
soap end send(soap);
return SOAP OK;
}

The HTTP POST plug-in provides a soap http body operation as illustrated above to copy the HTTP
Body content into a buffer.

The above example returns HTTP OK. If content is supposed to be returned, then use:

soap-¿http content = ”image/jpeg”; // a jpeg image to return back
soap response(soap, SOAP FILE); // SOAP FILE sets custom http content
soap send raw(soap, buf, len); // send image
soap end send(soap);

For client applications to use HTTP POST, use the soap post connect operation:

char *buf; // holds the HTTP request/response body data
size t len; // length of data
...
if (soap post connect(soap, ”URL”, ”SOAP action or NULL”, ”media type”)
|| soap send raw(soap, buf, len);
|| soap end send(soap))
... error ...

if (soap begin recv(&soap)
|| soap http body(&soap, &buf, &len)

279

|| soap end recv(&soap))
... error ...

// ... use buf[0..len-1]
soap end(soap);

Similarly, soap put connect and soap delete connect commands are provided for PUT and DELETE
handling.

19.38.4 The HTTP MD5 Checksum Plug-in

The HTTP MD5 plug-in works in the background to automatically verify the content of messages
using MD5 checksums. With the plug-in, messages can be transferred over (trusted but) unreliable
connections. The plug-in can be used on the client side and server side.

To use the plug-in, compile and link your application with httpmd5.c and md5evp.c located in the
plugin directory of the package. The md5evp.c implementation uses the EVP interface to compute
MD5 checksums with OpenSSL (compiled with -DWITH OPENSSL).

To enable the plug-in in your code, register the plug-in as follows:

#include ”httpmd5.h”
...
if (soap register plugin(&soap, http md5))

soap print fault(&soap, stderr); // failed to register

Once registered, MD5 checksums are produced for all outbound messages. Inbound messages with
MD5 checksums in the HTTP header are automatically verified.

The plug-in requires you to set the SOAP IO STORE flag when sending SOAP with attachments:

#include ”httpmd5.h”
...
struct soap soap;
soap init1(&soap, SOAP IO STORE);
if (soap register plugin(&soap, http md5)

soap print fault(&soap, stderr); // failed to register
... now safe to send SOAP with attachments ...

Unfortunately, this eliminates streaming.

19.38.5 The HTTP Digest Authentication Plug-in

The HTTP digest authentication plug-in enables a more secure authentication scheme compared
to basic authentication. HTTP basic authentication sends unencrypted userids and passwords
over the net, while digest authentication does not exchange passwords but exchanges checksums
of passwords (and other data such as nonces to avoid replay attacks). For more details, please see
RFC 2617.

The HTTP digest authentication can be used next to the built-in basic authentication, or basic
authentication can be rejected to tighten security. The server must have a database with userid’s

280

and passwords (in plain text form). The client, when challenged by the server, checks the authen-
tication realm provided by the server and sets the userid and passwords for digest authentication.
The client application can temporarily store the userid and password for a sequence of message ex-
changes with the server, which is faster than repeated authorization challenges and authentication
responses.

At the client side, the plug-in is registered and service invocations are checked for authorization
challenges (HTTP error code 401). When the server challenges the client, the client should set the
userid and password and retry the invocation. The client can determine the userid and password
based on the authentication realm part of the server’s challenge. The authentication information
can be temporarily saved for multiple invocations.

Client-side example:

#include ”httpda.h”
...
if soap register plugin(&soap, http da))

soap print fault(&soap, stderr); // failed to register
...
if (soap call ns method(&soap, ...) != SOAP OK)
{

if (soap.error == 401) // challenge: HTTP authentication required
{

if (!strcmp(soap.authrealm, authrealm)) // determine authentication realm {
struct http da info info; // to store userid and passwd
http da save(&soap, &info, authrealm, userid, passwd); // set userid and passwd for this

realm
if (soap call ns method(&soap, ...) == SOAP OK) // retry
{ ...

soap end(&soap); // userid and passwd were deallocated
http da restore(&soap, &info); // restore userid and passwd
if (!soap call ns method(&soap, ...) == SOAP OK) // another call

...
http da release(&soap, &info); // remove userid and passwd

This code supports both basic and digest authentication.

The server can challenge a client using HTTP code 401. With the plug-in, HTTP digest authenti-
cation challenges are send. Without the plug-in, basic authentication challenges are send.

Each server method can implement authentication as desired and may enforce digest authentication
or may also accept basic authentication responses. To verify digest authentication responses, the
server should compute and compare the checksums using the plug-in’s http da verify post function
for HTTP POST requests (and http da verify get for HTTP GET requests with the HTTP GET
plugin) as follows:

#include ”httpda.h”
...
if (soap register plugin(&soap, http da))

soap print fault(&soap, stderr); // failed to register
...
soap serve(&soap);

281

...
int ns method(struct soap *soap, ...)
{

if (soap->userid && soap->passwd) // client used basic authentication
{ // may decide not to handle, but if ok then go ahead and compare info:

if (!strcmp(soap->userid, userid) && !strcmp(soap->passwd, passwd))
{ ... handle request ...

return SOAP OK;
}

}
else if (soap->authrealm && soap->userid) // Digest authentication
{

passwd = ... // database lookup on userid and authrealm to find passwd
if (!strcmp(soap->authrealm, authrealm) && !strcmp(soap->userid, userid))
{

if (!http da verify post(soap, passwd))
{ ... handle request ...

return SOAP OK;
}

}
}
soap->authrealm = authrealm; // set realm for challenge
return 401; // Not authorized, challenge digest authentication
}

For more details, including how to configure HTTP Digest authentication for proxies, please see
the doc/httpda/html/index.html documentation in the gSOAP package.

19.38.6 The WS-Addressing Plug-in

The WSA WS-Addressing plug-in and the source code are extensively documented in the doc/wsa

directory of the gSOAP package. Please refer to the documentation included in the package.

The plug-in code is located in the plugin directory:

wsaapi.h and wsaapi.c WS-Addressing plugin (C and C++)

To enable WS-Addressing 2005 (and support for 8/2004), the service definitions header file for
soapcpp2 should include the following imports:

#import ”import/wsa5.h”

This imports the SOAP header elements required by WS-Addressing.

For more details, please see the doc/wsa/html/index.html documentation in the gSOAP package.

19.38.7 The WS-ReliableMessaging Plug-in

The WSRM WS-ReliableMessaging plug-in and the source code are extensively documented in
the doc/wsrm directory of the gSOAP package. Please refer to the documentation included in the
package.

282

The plug-in code is located in the plugin directory:

wsrmapi.h and wsrmapi.c WS-ReliableMessaging plugin (C and C++)

Also needed are:

threads.h and threads.c Multithreading and locking support

To enable WS-ReliableMessaging, the service definitions header file for soapcpp2 should include the
following imports:

#import ”import/wsrm.h”
#import ”import/wsa5.h”

This imports the SOAP header elements required by WS-ReliableMessaging.

For more details, please see the doc/wsrm/html/index.html documentation in the gSOAP package.

19.38.8 The WS-Security Plug-in

The WSSE WS-Security plug-in and the source code are extensively documented in the doc/wsse

directory of the gSOAP package. Please refer to the documentation included in the package for
details.

The plug-in code is located in the plugin directory:

wsseapi.h and wsseapi.c WS-Security plugin (C and C++)

Also needed are:

smdevp.h and smdevp.c Streaming XML signature and message digest engine
mecevp.h and mecevp.c Streaming XML encryption engine
threads.h and threads.c Multithreading and locking support

To enable WS-Secrutiy, the service definitions header file for soapcpp2 should include the following
imports:

#import ”import/wsse.h”

This imports the SOAP header elements required by WS-Security.

For more details, please see the doc/wsse/html/index.html documentation in the gSOAP package.

19.38.9 WS-Discovery

The WS-Discovery implementation is documented in the doc/wsdd directory of the gSOAP package.
Please refer to the documentation included in the package for details.

Basically, to add WS-Discovery support the following event handlers must be defined and linked:

283

void wsdd event Hello(struct soap *soap,
unsigned int InstanceId,
const char *SequenceId,
unsigned int MessageNumber,
const char *MessageID,
const char *RelatesTo,
const char *EndpointReference,
const char *Types,
const char *Scopes,
const char *MatchBy,
const char *XAddrs,
unsigned int MetadataVersion)

void wsdd event Bye(struct soap *soap,
unsigned int InstanceId,
const char *SequenceId,
unsigned int MessageNumber,
const char *MessageID,
const char *RelatesTo,
const char *EndpointReference,
const char *Types,
const char *Scopes,
const char *MatchBy,
const char *XAddrs,
unsigned int MetadataVersion)

soap wsdd mode wsdd event Probe(struct soap *soap,
const char *MessageID,
const char *ReplyTo,
const char *Types,
const char *Scopes,
const char *MatchBy,
struct wsdd ProbeMatchesType *ProbeMatches)

void wsdd event ProbeMatches(struct soap *soap,
unsigned int InstanceId,
const char *SequenceId,
unsigned int MessageNumber,
const char *MessageID,
const char *RelatesTo,
struct wsdd ProbeMatchesType *ProbeMatches)

soap wsdd mode wsdd event Resolve(struct soap *soap,
const char *MessageID,
const char *ReplyTo,
const char *EndpointReference,
struct wsdd ResolveMatchesType *ResolveMatches)

void wsdd event ResolveMatches(struct soap *soap,
unsigned int InstanceId,

284

const char *SequenceId,
unsigned int MessageNumber,
const char *MessageID,
const char *RelatesTo,
const char *EndpointReference,
const char *Types,
const char *Scopes,
const char *MatchBy,
const char *XAddrs,
unsigned int MetadataVersion)

These event handlers will be invoked when inbound WS-Discovery messages arrive using:

if (!soap valid socket(soap bind(soap, NULL, port, 100)))
.. error

if (soap wsdd listen(soap, timeout))
... error

which will listen for timeout seconds to inbound WS-Discovery messages on a port and dispatches
them to the event handlers. A negative timeout is measured in ns.

285

