

SIGRAND

Integrated access device

SHDSL modem Sigrand SG-16BG

User's Guide v. 2.5

Novosibirsk 2006 © 2005, 2006 Sigrand LLC

All trademarks and registered trademarks mentioned hereinafter are the property of their respective owners.

Contents

Contents	page
How to use this Guide	5
1. Modem description	7
1.1 DSL interface specifications	8
1.1.1 Maximum reach performance	9
1.1.2 File transfer performance	10
1.2 Ethernet interface specifications	11
1.3 Ethernet Bridge specifications	11
1.4 E1 interface specifications	11
1.5 RS-232C interface specifications	11
1.6 Power supply unit	12
1.7 Miscellaneous data	12
1.8 Shipment contents	12
1.9 Environmental specifications	12
1.10 Appearance, controls, indicators and connectors	13
1.10.1 Front panel and indicators	13
1.10.2 Rear panel and connectors	14
2. Modem setup directions	17
2.1 Connecting modem to a line	17
2.1.1 Requirements to a communication line	17
2.2 Choosing modem management method	18
2.3 "Master"/"slave" mode	18
2.4 Setting DSL rate	18
2.4.1 Setting DSL rate for remote modem	18
2.4.2 Rate selection guidelines	19
2.5 E1 interface setup	20
2.5.1 Connecting E1 interface	20
2.5.2 Configuring E1 interface	20
2.5.2.1 Bandwidth sharing between Ethernet and E1	20
interfaces	22
3. Modem management via console port	22
3.1 Terminal setup	22
3.2 General purpose commands	22
The help command	23

The info command	23
The stat command	24
The default command	24
The reboot command	25
3.3 DSL interface management	25
The help dsl command	25
The ds1 command	26
3.3.1 "Master"/"slave" mode selection	26
The dsl master and dsl slave commands	26
3.3.2 Setting DSL rate	26
3.3.2.1 Setting DSL rate from "master" modem	27
The dsl rate command	27
3.3.2.2 Setting DSL rate manually both sides	27
3.3.3 Line coding selection	28
The dsl code command	29
3.3.4 Link statistics	29
The dsl stat command	29
The dsl stat reset command	30
3.3.5 How to force a retrain	30
The dsl retrain command	30
3.4 Ethernet interfaces management	31
The help eth commands	31
The eth command	31
3.4.1 Rate and duplex type	31
The eth auto, eth /auto, eth rate, eth	32
half, eth full commands	
3.4.2 Flow control	33
The eth flow eth /flow commands	33
3.5 E1 interface management	34
The help e1 command The e1 command	34 34
3.5.1 Long/Short Haul modes	34
The e1 short and e1 long commands	34
3.5.2 Framing modes and superframe options	35
The e1 framed and e1 /framed commands	35

3.5.3 Line coding	36
The e1 code command	36
3.5.4 E1 interface statistics	36
The e1 stat command	36
3.5.5 Timeslot map	37
The e1 map command	38
3.5.5.1 Timeslot 0	40
3.5.5.2 Timeslot 16	41
4. Updating built-in modem firmware	42

How to use this Guide

To ease using this Guide the following notational conventions are provided here (icons as well as relevant fonts):

Icons

Icon	Meaning	Explanation
→	Pay attention! The text marked by this icon contains information making setup and maintenance of equipment	
	Important information!	The text marked by this icon contains important information explaining details of operation of equipment or software. This allows to save your time and efforts while equipment setup
	Do not make this!	Knowing this information allow you to avoid actions that can cause damage to hardware and/or personal injury

Font usage

Designation	Explanation
Picture on the screen	This font shows contents of terminal screen while modem setup.
Name of keyboard button	This font shows computer keyboard buttons, e.g. "Enter", which are used in the console management mode.
Select <i>Property</i> in the <i>File menu</i>	<i>Italic</i> notes the fragments of this Guide containing important information (together with the relevant icons). It also marks software buttons of menu in the text.
dsl stat	Bold font is used to designate modem management commands while a terminal session.

 \rightarrow

Before starting installation of the modem we_ recommend you to look for a updated version of this_ User's Guide as well as the firmware and the drivers_ available at our site www.sigrand.com

1. Modem description

The Sigrand SG-16BG modem is a SHDSL-modem. It is able to exchange heterogeneous IP and TDM traffic through Ethernet interfaces and an E1 port.

LAN interfaces work through a built-in Ethernet-bridge and are designed to connect distributed local area networks as well as remote computers and other devices equipped with an Ethernet interface.

The bridge can transmit VLAN IEEE 802.1Q tags through the DSL interface and the Ethernet interfaces.

Connection of TDM-based communication equipment such as telco equipment, routers and access servers is provided through the E1 interface (G.703/G.704, 2048 kbps).

The SHDSL interface of the modem conforms to ITU-T G.991.2.bis standard and uses TCPAM (Trellis-Coded Pulse Amplitude Modulation) line coding.

Features of the TCPAM line coding:

The TCPAM line coding used by G.991.2 (G.SHDSL) compatible modems has a few modes. The modes differ in complexity of coding algorithm. The modes with larger number of modulation positions (TCPAM16, TCPAM32) are applicable for higher rates, the modes with less number of modulation positions (TCPAM4, TCPAM8) are applied for lower rates. Respectively, the more complicated the coding algorithm the worse the channel noise immunity and vice versa.

So take special attention to the TCPAM line coding algorithm selection while configuring the line rate. It may be necessary to change the line coding to achieve the best result.

Table 1 shows the line coding options and respective data rate ranges.

Table 1

Line coding	Data rate range (kbps)
TCPAM32	256 – 6016

TCPAM16	192 – 3840
TCPAM8	192 – 1216
TCPAM4	64 – 704

Manual line coding selection is available only in the console management mode – see chapter 3 of this Guide

Compatibility:

The Sigrand SG-16BG modem line coding is compatible with all Sigrand SG-16 series and Granch SBN16 series modems.

Limitations of compatibility:

Interoperability with the Granch SBNI16 modems is supported only within the compatible data rate range from 64 to 4608 kbps.

The modem features the following interfaces:

- one SHDSL interface (conforms to ITU-T G.991.2.bis standard) providing the data rate range from 192 to 5696 kbps and the optional extended range from 64 to 6016 kbps
- two Ethernet 10/100Mb (IEEE 802.3) interfaces with Auto-Negotiation and Auto MDI/MDI-X
- one E1 interface (G.703/G.704, 2048 kbps)
- one EIA-232C (RS-232C) interface for modem management.

1.1 DSL interface specifications

Link type Number of wires per line Permitted cabling Line coding Input/output impedance, Ω Data rate range, kbps Data rate step, kbps point-to-point 2 (one pair) any UTP TCPAM 135 64-6016 64

Transmission type	full duplex
Data transfer mode	synchronous, by packets
Packet type	HDLC
Checksum type	CRC32
Connector type	RJ-45
Galvanic decoupling transformer	1500
breakdown voltage, min, V	
Surge protector triggering voltage	30
(differential), V	
Arrester breakdown voltage (common-	350
mode), V	

1.1.1 Maximum reach performance

Brief information about the maximum reach performance of the Sigrand SG-16BG modem is shown on Table 2. The Bit Error Rate (BER) at the maximum reach is equal to or less than 10⁻⁷. The specified reach is proved by testing at the Sigrand lab reference line. Full version of the rate table is available at our site <u>www.sigrand.com</u>. An actual reach may vary against the shown data due to variations of cable performance.

Table 2

Data rate (kbps)	Line coding	Rating	TPP50-0.4 cable (26 AWG)	TPP50-0.5 cable (24 AWG)
6016	TCPAM32	Length (km/ft)	1.8/3500	2.2/7200
6016	TCPAIN52	R (Ω)	476	420
4608	TODAM22	Length (km/ft)	2.0/6500	2.6/8500
4000	TCPAM32	R (Ω)	560	455
3072	TCPAM16	Length (km/ft)	3.0/9800	4.2/13700
3072	TCPAINTO	R (Ω)	840	736
2304	TCPAM16	Length (km/ft)	3.8/12400	5.4/17700
2304	ICFAIIIIO	R (Ω)	1064	945

1536	TCPAM16	Length (km/ft)	4.4/14400	6.4/20100
1550	TCPAIVITO	R (Ω)	1232	1120
1024	TCPAM8	Length (km/ft)	5.0/16400	7.6/24900
1024	TCPAIVIO	R (Ω)	1400	1330
512	TCPAM8	Length (km/ft)	5.8/19000	9.0/29500
512	I CPAIVI8	R (Ω)	1624	1575
256		Length (km/ft)	6.6/21600	10.0/32800
250	TCPAM8	R (Ω)	1848	1750
128	TCPAM4	Length (km/ft)	7.4/24200	11.4/37400
120	T CPAIVI4	R (Ω)	2072	1995
64	TCPAM4	Length (km/ft)	7.4/24200	11.4/37400
04		R (Ω)	2072	1995

1.1.2 File transfer performance

Performance of the SG-16BG modem during file transferring by *FTP* protocol is shown on Table 3. The table contains average readings obtained on a line with error rate less than 10^{-7} .

Table 3

Line data	File transfer	Line data	File transfer
rate	performance	rate	performance
(kbps)	(KBps)	(kbps)	(KBps)
6016	700	1792	209
5696	662	1536	179
4608	536	1280	149
4096	478	1024	119
3584	418	768	89
3072	354	512	59
2560	304	256	29
2304	261	192	22
2048	234	128	15

1.2 Ethernet interface specifications

10/100 Base-T 2 10/100 Half and full duplex ANSI/IEEE Std 802.3 available
2048 1536 512 (340 packets)
RJ-45, Balanced 4 HDB3, AMI 2048 1.2 (3900) 2.4 (7800) G.704 CRC4, CAS available

Baud rate	9600, 57600
Protocol parameters	8-N-1
Flow control	N/A
Connector type	RJ-45 (DB-9F with converter)

1.6 Power supply unit

Type Input voltage Output voltage Maximum load current Polarity of central contact of connector	BPN-12-1V 220V/50Hz 12V 1A positive
1.7 Miscellaneous data	
 Overall modem dimensions: height, mm/in. width, mm/in. depth, mm/in. Weight, g/lb Weight with PSU, g/lb Power consumption, W 	45/1.77 225/8.86 165/6.5 450/1 1025/2.26 6
1.8 Shipment contents	
Sigrand SG-16BG modem Power supply unit Guide	1 pc. 1 pc. 1 pc.

Cable with converter RJ-45-DB-9	1 pc.
Package	1 pc.

1.9 Environmental specifications

The modem is designed to operate under office conditions as follows:

air temperature	10 40 °C (50 104 °F)
relative air humidity	up to 85 %
atmosphere pressure	84 107 kPa (630 802
	mmHg)

1.10 Appearance, controls, indicators and connectors.

The Sigrand SG-16BG modem should be connected either to a computer equipped with an Ethernet or Fast Ethernet card or to an Ethernet-switch.

We recommend to connect the modem to an Ethernet switch, not a hub, since our equipment is optimized for interaction with Ethernet switches.

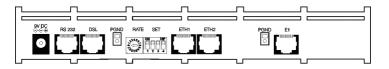
The modem is manageable by switches placed on the rear panel as well as by console management port (ch. 4.1).To manage the modem as well as to monitor its status you should have an ANSI-compatible terminal emulation software installed on your computer. Configure your terminal program according to ch. 1.3 of this Guide.

1.10.1 Front panel and indicators

::::::::::::::::::::::::::::::::::::::	G		I	
E1	TEST SYNC LINK ETHERNE	FD/C	ERR SNR LINK	sigrand Power
SHDSL modem		1 2		

The front panel indicators display the status of device operation.

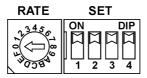
Purpose of Sigrand SG-16BG indicators


-	-	Table 3		
Indicator	Status	Explanation		
		POWER		
POWER	On	Modem is on		
FUNER	Off	Modem is off		
		DSL		
LINK	On	Active link to remote modem		
	Off	No link to remote modem		

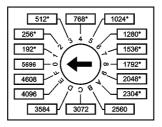
		Blink	Bad Signal/noise ratio	
SNR	LINK on	Off	Good Signal/noise ratio	
	LINK off	Blink	Link activation in progress	
		Off	No link	
ERR	LINK on		A packet with error received	
EKK		Off	No error	
	LINK off	On	Fatal error	
	ETHERNET (channels 1 and 2)			
	On	Valid Ethernet link detected		
LINK	Off	Ethernet link not detected		
	Blink	Traffic exchange		
100M	LINK on	On	100Base-TX link detected	
100101	LINKON	Off	10Base-TX link detected	
		On	Full duplex	
FD/C	LINK on	Off	Half duplex	
		Blink	Collision detected	
		E1		
LINK	On		1 equipment detected	
	Off		n E1 equipment	
SYNC	On	Frame synchronization detected or Unframed mode		
	Off	Frame synchi	ronization not detected	
TEST	On	Test mode		
1201	Off	Operation mode		

1.10.2 Rear panel and connectors

Layout of connectors and switches on the rear panel of the Sigrand SG-16BG modem


Figure 2

Purpose of connectors and switches of the Sigrand SG-16BG modem


	Table 4
Power supply unit plug	9-12V DC
RS-232C console port for modem management	RS232
DSL line connector	DSL
Terminal to connect to protective ground	PGND
Dial to select fixed rate for DSL channel	RATE
DIP switches to set up modem operation mode	SET
Ethernet 10/100Base-T socket 1	ETH1
Ethernet 10/100Base-T socket 2	ETH2
E1 interface socket	E1

The "RATE" dial and the "SET" DIP switches (fig.3) specify operation mode of the DSL channel. The dial sets DSL channel data rate (fig.4).

Fig. 4

The "SET1" DIP switch selects "Master/Slave" mode, the "SET2" switch defines a method of the DSL channel rate negotiation and the "SET4" switch sets a mode of modem management. Purpose of the switches are shown on Table 5.

Table 5

Switch	Purpose	Position	Meaning
SET1	Operation	ON	Master modem (STU-C)
SETT	mode	OFF	Slave modem (STU-R)
	Local or	ON	Rate is exchanged by
SET2	Preactivation	ON	Preactivation
JL12		OFF	Rate is set locally on
		011	each modem
	RS-232C	ON	57600 bps
SET3	console port	OFF	9600 bps
	data rate		
Modem		ON	by console port
SET4 management method	OFF	by DIP switches	

Attention!

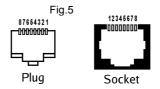
Reboot the modem to activate a new modem operation mode, changed by the DIP switches!

Modem setup directions Connecting modem to a line

Make sure the line has no foreign devices varying its specifications such as fuses, inductors, load coils and other similar line conditioning devices. These devices may cause serious modem performance limitations or even completely prevent operation of an xDSL modem!

Make sure that the communication line in use has neither external voltage supply nor attached foreign telco devices! Ignoring this rule may cause permanent damage to both the modems and those foreign telco equipment!

2.1.1 Requirements to a communication line


The line must comply with the following requirements for proper operation and performance:

- It must have neither leakage to ground nor to other wires (both connected and loosed). It should not have taps (branches).
- Both wires must belong to the same twisted pair if a multi-pair cable is used.
- Parallel connection of a few pairs (e. g., to reduce the line resistance) is not permitted.

Ignoring the aforementioned requirements may cause significant modem performance limitations or even completely prevent operation of an xDSL modem.

After you verify that the line comply with the aforementioned requirements -

- Fix the supplied RJ-45 plug on the cable in accordance with figure 5. The Sigrand SG-16BG modem uses only one pair of pins, namely 4 and 5. Other pins are not assigned.
- Attach the cable to the DSL connector of the modem.

2.2 Choosing modem management method

There are two ways to manage the modem:

- by the DIP-switches placed on the rear panel of the modem (see fig.4);
- by a terminal program via the RS-232C console port.

Both modes have certain advantages over each other so a user is free to choose either setup mode according to actual requirements for modem operation.

Setup by switches is described here as the most simple method. Management by a terminal program is described in Chapter 3.

To use setup by switches, set the SET4 switch to OFF state. For quick reference use the sticker at the bottom side of the modem enclosure.

2.3 "Master"/"slave" mode

Two modems operating peer-to-peer must be configured by the SET1 DIP switch (fig. 3, table 4) such as one modem is set up as a "master" (SET1 is ON) and another one as a "slave" (SET1 is OFF). We recommend to use as a "master" the modem which is more accessible for management and maintenance.

2.4 Setting DSL rate

Fixed rate value is set by dial switch RATE (figures 2 and 4). One of 16 fixed data rates have to be selected by the dial.

2.4.1 Setting DSL rate for remote modem

This feature is available only for modems with firmware version 2.5 or higher.

The SET2 switch has the following meaning:

- if SET2 is OFF, the rate is set manually at both ends of the line. (I this case modem uses Annex A for compatibility with firmware version 2.4 and lower)
- if SET2 is ON, the DSL rate is set by the dial switch RATE of the "master" modem. (In this case Annex F is used.)

The SET2 switch must be set to the same position for both modems.

To operate properly peer-to-peer, the modems settings should match each other! Do not forget to configure the remote modem beforehand!

2.4.2 Rate selection guidelines

Before setting the data rate you should have known the performance of the line the modems are intended for. If the line performance is unavailable, apply the following technique to select the proper data rate:

- Measure resistance of the line. To do this, make short-circuit on either line side and attach an ohmmeter to another one. Then determine a maximum rate providing reliable communication by table 2.
- Switch carefully the dial to the required position with a screwdriver. Reboot both modems to activate the new settings. If the remote rate setting is used (SET2 is ON), change the "master" modem rate only. Link activation takes up to 2 or 3 minutes to succeed.
- If the link is not activated (the DSL LINK LED is not getting light) during the mentioned time, set a smaller value on the rate dial and do the next attempt to activate the link.
- If you can't get the link activated, consider to use console management mode (Chapter 3). In this mode you can try to succeed by varying the line coding (Chart 1) as well.

2.5 E1 interface setup

2.5.1 Connecting E1 interface

Equipment attached to the modem is required to have a balanced E1 port, typically implemented as an RJ-45 socket. The interface uses 2 loops, one to receive, another to transmit the data. Pins 1 and 2 are assigned to the E1 receiver input, pins 4 and 5 are assigned to the transmitter output (Table 6, figure 5). Other pins are not assigned. It is not necessary to recognize polarity of the connection.

Table 6

D!~	
Pin	E1 circuit
1	Receive + (Rx Tip)
2	Receive – (Rx Ring)
4	Transmit + (Tx Tip)
5	Transmit – (Tx Ring)

2.5.2 Configuring E1 interface

In the DIP switches setup mode (SET4 is OFF) the E1 port always has the following fixed settings:

- Long-Haul mode
- HDB3 line coding
- CRC4 and CAS superframes are disabled

The RATE dial defines the DSL interface rate and the number of mapped E1 timeslots, as shown in the Table 8.

2.5.2.1 Bandwidth sharing between Ethernet and E1 interfaces

The DSL channel rate is shared between the Ethernet and the E1 interfaces. The range of the E1 timeslots destined to transmit data is selected together with the DSL rate by the RATE dial. The following rules apply:

- If the DSL rate is less than or equal to 4096 kbps (i.e. the RATE dial was set to positions from 1 through E), the bandwidth is shared equally between the Ethernet and E1 interfaces;
- If the DSL rate exceeds 4096 kbps (i.e. the RATE dial is in position "F" or "0"), all E1 timeslot are transmitted and the rest of the bandwidth is used by the Ethernet interface;
- When possible, unframed mode is used (RATE is "E", "F", or "0").

Bandwidth sharing between interfaces by the RATE dial

Table 8

					Table 0
RATE	E1 timeslots	Ethernet Rate, kbps	RATE	E1 timeslots	Ethernet Rate, kbps
1	1	128	9	1-16	1024
2	1-2	128	А	1-18	1152
3	1-4	256	В	1-20	1280
4	1-6	384	С	1-24	1546
5	1-8	512	D	1-28	1792
6	1-10	640	Е	Unframed	2048
7	1-12	768	F	Unframed	2560
8	1-14	896	0	Unframed	3648

3. Modem management via console port

The modem is manageable by a terminal attached to the RS-232C console port or by a computer with any applicable terminal emulation software.

3.1 Terminal setup

Set the the SET4 DIP-switch to "ON" position to manage the modem through the console port. (see Table 5, Figure 2).

Set the baud rate of the modem console port by the SET3 switch. SET3 is OFF stands for 9600 baud, SET3 is ON stands for 57600 baud.

Attach the RS-232C port to a serial port of your computer by the supplied cable.

Configure the terminal emulation software installed on your computer (for example, HyperTerminal) as follows:

Data bits: 8 Parity: None Stop bits: 1 Flow control: None

Baud rate (Bits per second) should be set to 9600 or 57600 in accordance with SET3 switch setting.

Power on or reboot the modem. If the terminal has been set up properly, the following message appears on the screen:

```
Sigrand SG-16B SHDSL modem V.2.5
Interface module ETH1/ETH2
Interface module M16-G
Initialization complete
:
```

3.2 General purpose commands

The modem is managed by a set of commands conventionally divided into two types: the "general purpose" commands such as help, info,

update, default, reboot, and the interface management commands such as dsl and eth1/eth2.

Capabilities of the console management mode allow to configure the DSL interface as well as to control the Ethernet interfaces. It is also possible to watch status of the interfaces, etc. The summary of the general management capabilities can be invoked by the help command:

```
: help
 **** Available commands: ****
HELP - display this text
HELP [ETH|DSL|PORT|E1|FXS|FXO] - detailed interface help
INFO - view information about hardware and firmware
STAT [RESET] - show all statistics (or clear it)
ETHx - view or change ETHx settings, x=1,2 (see HELP ETH)
DSL - view or change DSL settings (see HELP DSL)
PORT - view or change PORT settings (see HELP PORT)
E1 - view or change FXS settings, x=1,2 (see HELP FXS)
FXSx - view or change FXS settings, x=1,2 (see HELP FXS)
FXOx - view or change FXS settings, x=1,2 (see HELP FXS)
UPDATE - update sg16 firmware
DEFAULT - set factory defaults
REEBOOT - reboot the modem
:
```


The SG-16 modems are multi-functional devices with various types and combinations of system interfaces such as E1, V.35, FXO/FXS. Therefore the **help** command displays commands for each interface available in this firmware.

The info command displays information about the firmware version, the modem uptime, and current status of the modem interfaces.

: info Sigrand SG-16B SHDSL modem V.2.5 Setup mode: Terminal

```
SHDSL firmware: V.5.3E
FPGA configuration: V.2.20
Interface module ETH1/ETH2
Interface module M16-G
Uptime: 0 days 01:08:55
E1A: Long-Haul UNFRAMED Code=HDB3 - OFFLINE
ETH1: Rate=100 Mbit/s Duplex=FULL Auto-Neg FlowCont - OFFLINE
ETH2: Rate=100 Mbit/s Duplex=FULL Auto-Neg FlowCont - OFFLINE
DSL: CFG=PREACT Rate=192 Code=TCPAM16 MASTER Annex=F -
OFFLINE
:
```

The stat command displays current status and statistics of the modem interfaces:

: stat ETH1: Rate=100 Mbit/s Duplex=FULL Auto-Neg FlowCont - OFFLINE TX=0 RX=0 ERR=0 COL=0 ETH2: Rate=100 Mbit/s Duplex=FULL Auto-Neg FlowCont - OFFLINE TX=0 RX=0 ERR=0 COL=0 E1A: Long-Haul UNFRAMED Code=HDB3 - OFFLINE CV=0 Loop Loss: 37.5 dB DSL: CFG=LOCAL Rate=5696 Code=TCPAM32 MASTER Annex=A -OFFLINE TX=0 RX=0 ERR=1 LOSW=0 CRC6=0 RETRAIN=0 of 1 Total online time: 0 days 00:00:00 Total offline time: 0 days 00:00:08 Connect duration: 0 days 00:00:00 :

The default command resets all modem settings to factory default values.

```
: default Load factory default and reboot? (y/n) Y
```

```
Default settings loaded Rebooting...
```

entering cancel <u>N</u> or any other character except <u>Y</u> breaks the command execution and causes the prompt to enter a next command.

The reboot command performs reset of the modem.

```
: reboot
Rebooting...
Sigrand SG-16B SHDSL modem V.2.5
Interface module ETH1/ETH2
Interface module M16-G
Initialization complete
:
```

The update command is used to update the modem firmware. Detailed procedure of firmware reprogramming is discussed in chapter 4 of this Guide.

Not recognized commands causes appearance of the message Unknown command, illegal command options causes appearance of the message Unknown keyword.

3.3 DSL interface management

We advise to invoke the help dsl command in advance to get informed about the DSL interface management features available through the console management mode:

```
: help dsl
DSL - show current DSL settings
DSL CFG [LOCAL|PREACT] - configuration mode: Local or G.hs
```

```
Preactivation
DSL RATE [rrrr|AUTO] | CODE cccc | MASTER | SLAVE - set mode
for DSLx
DSL ANNEX [A|B|F|G] - set Annex type
DSL STAT [RESET] - show statistics for DSL (or clear it)
DSL RETRAIN - force DSL to retrain
:
```

The DSL command allows to view statistics, to enter or to change settings of the DSL interface.

The command invoked with no option displays current settings of the interface

```
: dsl
DSL: CFG=PREACT Rate=192 Code=TCPAM16 MASTER Annex=F -
OFFLINE
:
```

3.3.1 "Master"/"slave" mode selection

Configure one peer modem as "master", do another one as "slave" for proper operation.

This is performed by the dsl command with the master or slave options:

```
: dsl master
DSL: CFG=LOCAL Rate=512 Code=TCPAM8 MASTER Annex=A - OFFLINE
: dsl slave
DSL: CFG=LOCAL Rate=512 Code=TCPAM8 SLAVE Annex=A - OFFLINE
:
```

3.3.2 Setting DSL rate

Modems with firmware version 2.5 or higher have the ability to set DSL rate from a "master" modem. The ability to set the rate manually at the both ends of the line is supported as well.

3.3.2.1 Setting DSL rate from "master" modem

In order to control the rate by accessing the "master" modem only, configure both modems beforehand for Preactivation (dsl cfg preact) and Annex F (dsl annex f):

```
: dsl cfg preact annex f
DSL: CFG=PREACT Rate=2304 Code=TCPAM16 MASTER Annex=F -
OFFLINE
:
```

The rate setup is performed by the **RATE rrrr** option ("**rrrr**" stands for rate in kbps). The rate is within 192 to 5696 kbps range with 64 kbps step:

```
: dsl rate 192

DSL: CFG=PREACT Rate=192 Code=TCPAM16 MASTER Annex=F -

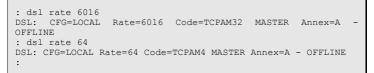
OFFLINE

: dsl rate 5696

DSL: CFG=PREACT Rate=5696 Code=TCPAM32 MASTER Annex=F -

OFFLINE

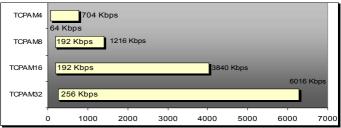
:
```


To set a new value of the rate, enter the command at the "master" modem only. The "slave" modem obtains the rate via G.hs Preactivation (ITU-T G.994.1) protocol.

3.3.2.2 Setting DSL rate manually both sides

If the lower rates (64 to 128 kbps) or the higher rates (5696-6016) are required, set the local control mode (dsl cfg local) for both modems. The Annex type can be set A or F, if both modems have firmware version 2.5 or higher. If one of the modems have firmware version 2.4 or lower (including Granch SBNI16 modems), only Annex A should be used for compatibility (dsl annex a).

```
: dsl cfg local annex a
DSL: CFG=LOCAL Rate=5696 Code=TCPAM32 MASTER Annex=A -
OFFLINE
:
```


Manual rate setup is performed by the **RATE rrrr** option ("**rrrr**" stands for rate in kbps). The rate is within 64 to 6016 kbps range with 64 kbps step. The rate should be set the same for both sides:

The line coding mode is also changed accordingly upon the rate change. See how rates match line coding on Chart 1.

3.3.3 Line coding selection

As mentioned above, different TCPAM line coding modes are used to transmit data with different rates.

The code cccc option of the dsl command provides a way to select a line coding mode of 4 available (TCPAM32, TCPAM16, TCPAM8 and TCPAM4). It allows to select a proper mode in according to ratings of the line.

```
: dsl code tcpam8
DSL: CFG=LOCAL Rate=512 Code=TCPAM8 MASTER Annex=A - OFFLINE
```


As follows from Chart 1, many data rates allows to use multiple line coding modes. Rule: apply a coding mode with less positions (TCPAM8, TCPAM4) on a line exposed to high level of noise; apply a coding mode with more positions (TCPAM32, TCPAM16) if bandwidth is limited.

In the local configuration mode (CFG=LOCAL) all four variations of the line coding are applicable. In the Preactivation mode (CFG=PREACT), only two codings can be used: TCPAM16 in the 192 to 3840 kbps range and TCPAM32 in the 768 to 5696 kbps range.

If the data rate is not within the permitted range for an entered line coding mode, the following message appears: invalid line code for this rate.

3.3.4 Link statistics

Use the dsl command with the stat option to view link statistics:

```
: dsl stat
DSL: CFG=LOCAL Rate=512 Code=TCPAM8 SLAVE Annex=A - ONLINE
TX=1341 RX=1231 ERR=1 LOSW=12 CRC6=11 RETRAIN=2 of 5
Loop Loss: 0.0 dB Noise Margin: +22.0 dB
Total online time: 0 days 00:42:19
Total offline time: 0 days 00:42:02
Connect duration: 0 days 00:15:53
```

Legend:

ONLINE - the DSL link is activated; OFFLINE - the DSL link is not activated; TX - the number of transmitted packets; RX - the number of received packets with errors; LOSW - the number of received packets with errors; LOSW - the number of frame synchronization loss events; CRC6 - the number of CRC6 checksum errors; RETRAIN - the number of successful attempts to establish the link with regard to the total number of attempts; Loop Loss - loop loss (attenuation level), dB; Noise Margin - loop noise margin, dB; Total online time - total time elapsed when link is on; Total offline time - total time elapsed when link is off; Connect duration - duration of the last successful session;

Use the dsl command with the stat reset option to clear the statistics counters:

: dsl stat reset DSL: CFG=LOCAL Rate=512 Code=TCPAM8 SLAVE Annex=A - ONLINE TX=0 RX=0 ERR=0 LOSW=0 CRC6=0 RETRAIN=0 of 0 Loop Loss: 0.0 dB Noise Margin: +22.0 dB Total online time: 0 days 00:00:00 Total offline time: 0 days 00:00:00 Connect duration: 0 days 00:00:00 :

3.3.5 How to force a retrain

Retraining of the DSL interface is performed by the dsl command with the retrain option:

```
: dsl retrain
DSL: CFG=LOCAL Rate=512 Code=TCPAM8 SLAVE Annex=A - OFFLINE
```

3.4 Ethernet interfaces management

The Sigrand SG-16BG modem features two Ethernet 10Base-T/100Base-T ports with Auto MDI/MDI-X.

The following commands allow to manage the ports:

```
: help eth
ETHx - show current ETHx settings, ETHx=1,2
ETHx RATE [10|100]|FULL|HALF|[/]AUTO|[/]FLOW - set mode for
ETHx
ETHx STAT [RESET] - show statistics for ETHx (or clear it)
:
```

The eth command allows to view statistics, to enter or to change Ethernet interface settings.

The command requires to specify interface index – eth1 stands for the Ethernet1 interface and eth2 the Ethernet2 interface. The command entered with no arguments allows to view current settings of the interfaces:

```
: eth1
ETH1: Rate=10 Mbit/s Duplex=HALF Auto-Neg FlowCont - ONLINE
:
```

3.4.1 Rate and duplex type

The modem Ethernet interfaces have Auto-Negotiation and flow control settings enabled by default.

Transmission rate and duplex type are detected automatically in Auto-Negotiation mode. The priority of operation mode detection descends from 100Base-TX Full Duplex (the highest priority), 100Base-TX Half Duplex, 10Base-T Full Duplex down to 10Base-TX Half Duplex (the lowest priority).

To disable the Auto-Negotiation mode use the eth1 or the eth2 commands with the /auto option:

```
: eth1
ETH1: Rate=100 Mbit/s Duplex=FULL Auto-Neg FlowCont - ONLINE
: eth1 /auto
ETH1: Rate=100 Mbit/s Duplex=FULL FlowCont - ONLINE
:
```

If Auto-Negotiation mode is off, use either the eth1 or the eth2 commands respectively with the rate 10 or the rate 100 options to set the Ethernet interface rate manually:

```
: ethl rate 100
ETHl: Rate=100 Mbit/s Duplex=FULL FlowCont - ONLINE
: ethl rate 10
ETHl: Rate=10 Mbit/s Duplex=FULL FlowCont - ONLINE
:
```

Also the full or the half options of the commands allows to switch between full and half duplex, use the options on the relevant interface:

```
: ethl half
ETH1: Rate=10 Mbit/s Duplex=HALF FlowCont - ONLINE
: ethl full
ETH1: Rate=10 Mbit/s Duplex=FULL FlowCont - ONLINE
:
```

Use the eth1 or the eth2 command with the auto option to enable Auto-Negotiation mode:

```
: eth1
ETH1: Rate=10 Mbit/s Duplex=FULL FlowCont - ONLINE
: eth1 auto
ETH1: Rate=100 Mbit/s Duplex=FULL Auto-Neg FlowCont - ONLINE
:
```

3.4.2 Flow control

Besides setting of the rate and the transmission mode, the modem features flow control in compliance with the IEEE 802.3x specifications. It improves operation, protects packet buffer against overflowing and prevents data loss. This technique may also improve total network throughput and help to achieve optimal performance.

Use the eth1 or the eth2 commands with the flow option to enable flow control feature:

```
: eth1 flow
ETH1: Rate=100 Mbit/s Duplex=FULL Auto-Neg FlowCont - ONLINE
:
```

Use the eth1 or the eth2 commands with the /flow option to disable the feature:

```
: eth1 /flow
ETH1: Rate=100 Mbit/s Duplex=FULL Auto-Neg - ONLINE
:
```

3.5 E1 interface management

The Sigrand SG-16BG modem features one E1 (G.703/G.704, 2048 kbps) port.

The following commands allow to manage the port:

```
:help el
E1 - show current E1 settings
E1 [SHORT|LONG] - select Short-Haul or Long-Haul mode
E1 CODE [AMI|HDB3] - set E1 line code
E1 [/]FRAMED [/]CRC4 [/]CAS - set E1 framing options
E1 MAP - show E1 timeslot map
E1 MAP [ADD|DEL] [0]..[31] [ALL] - add/delete timeslots
E1 STAT - show E1 statistics and clear it
:
```

The e1 command allows to view the statistics and to configure the E1 interface.

Execution of the command without options and arguments shows current settings of the interface:

```
: e1
E1A: Long-Haul FRAMED CAS Code HDB3 - ONLINE
:
```

3.5.1 Long/Short Haul modes

The **short** option of the E1 command turns off the E1 interface line amplifier. The **long** option conversely turns it on. Respectively, the shorthaul mode range is within 400 meters (1200 feet) for 0.4 mm wire (26 AWG) cable. The long-haul mode range is expanded up to 1200 meters (3600 feet).

```
: el long
ElA: Long-Haul UNFRAMED Code=HDB3 - ONLINE
: el short
ElA: Short-Haul UNFRAMED Code=HDB3 - ONLINE
:
```

3.5.2 Framing modes and superframe options

The G.704 framed mode is enabled by the e1 command with the framed option and additional keys crc4 and cas. These keys defines enable the appropriate CRC4 and CAS superframes.

```
: el framed crc4 cas
ElA: Long-Haul FRAMED CRC4 CAS Code=HDB3 - ONLINE
:
```

The error message follows up any attempt to enable superframing in unframed mode:

```
: el crc4
Invalid option for unframed mode
: el cas
Invalid option for unframed mode
:
```

Disabling superframes and frame synchronization is performed by the e1 command with the /framed option and the /crc4 and /cas keys.

```
: el
ElA: Long-Haul FRAMED CRC4 CAS Code=HDB3 - ONLINE
: el /cas
```

```
E1A: Long-Haul FRAMED CRC4 Code=HDB3 - ONLINE

: el /crc4

E1A: Long-Haul FRAMED Code=HDB3 - ONLINE

: el /framed

E1A: Long-Haul UNFRAMED Code=HDB3 - ONLINE

:
```

Disabling framing synchronization also disables the CRC4 and CAS superframes.

```
: el
ElA: Long-Haul FRAMED CRC4 CAS Code=HDB3 - ONLINE
: el /framed
ElA: Long-Haul UNFRAMED Code=HDB3 - ONLINE
:
```

3.5.3 Line coding

The line coding type is set by the E1 command with the code option and keys ami or hdb3.

```
: el code ami
ElA: Long-Haul FRAMED CRC4 CAS Code=AMI - ONLINE
: el code hdb3
ElA: Long-Haul FRAMED CRC4 CAS Code=HDB3 - ONLINE
:
```


ITU-T G.703 recommendation requires the HDB3 line coding.

3.5.4 E1 interface statistics

Use the e1 command with the stat option to view the statistics:

```
: el stat
ElA: Long-Haul FRAMED CAS Code=HDB3 - ONLINE
FAS Sync=No CAS_Sync=No
CV=O FASE=0
Loop Loss: 37.5 dB
:
```

```
FAS_Sync - framing synchronization status;
CAS_Sync - CAS superframe synchronization status;
CRC4_Sync - CRC4 superframe synchronization status;
CV - the number of code violations
FASE - the number of Frame Alignment Signal Errors
CRC4E - the number of CRC4 errors
E-bits - the number of far end errors;
Loop Loss - line loop loss, dB;
```


Execution of the **e1 stat** command does automatic reset of any current statistics of the interface!

3.5.5 Timeslot map

The G.704 E1 frame structure consists of 32 8-bit channels (so-named "timeslots") which have been assigned numbers from 0 to 31.

The timeslot 0 is used to transmit the frame alignment signal (FAS) and the additional (service) bits (Sa, Si).

The timeslots 1 through 31 are used to transmit payload data. The timeslot 16 may be retained for signaling.

The SGI-16BG modem supports transmission within the range from 1 to 32 timeslots. An actual amount of the slots depends on feasible DSL rate. The rate must be at least N*64 kbps to be able to transmit N timeslots. For example, DSL rate must be at least 512 kbps to transmit 8 timeslots.

Timeslot numbers destined for transmission are defined by timeslot map. Each of 32 timeslots can be individually included or excluded from the number of transmitted timeslots.

The e1 command with the map option allows to view and modify the timeslot map. The timeslots destined for transmission are marked by asterisk (*). The timeslots marked by minus (-) sign are not transmitted.

To add timeslots use the e1 command with the map option and a key alike add **N** with **N** standing for number of an added timeslot.

To add several timeslots specify those by a list: e1 map add 3 4 6, or by a range: e1 map add 8-11. To enable all timeslots simultaneously use the following command: e1 map add all.

```
: el map add 3 4 6
ElA: Long-Haul FRAMED Code=HDB3 - ONLINE
```

If total capacity of timeslots exceeds the DSL interface rate, the following warning appears while map examination: "Too many timeslots for this DSL rate"

To delete timeslots from the transmission list use the map del N option with N standing for number of a deleted timeslot. To delete several timeslots specify those by a list: map del 1 2 3 or by a range: map del 7-14. It also possible to remove all timeslots: map del all.

To apply a new timeslot map enter the dsl retrain command. It is required to reconfigure the DSL interface upon changing the map.

Defining of timeslots is possible in framed mode only. In unframed mode the entire E1 trunk is passed through DSL so the required DSL rate is 2048 kbps or greater.

The error message appears on any attempt to change the timeslot map in unframed mode:

```
: el
ElA: Long-Haul UNFRAMED Code HDB3 - ONLINE
: el map add 1-5
Invalid option for unframed mode
:
```

3.5.5.1 Timeslot 0

The timeslot 0 usually is not included in a list of transmitted timeslots since it is used for framing synchronization and carries no payload data, but its transmission demands another 64 kbps of the DSL rate. If the timeslot 0 is used to transmit payload data in additional (service) bit positions, it may also be included to the list of transmitted timeslots:

3.5.5.2 Timeslot 16

The timeslot 16, conforming to G.704 recommendation, is reserved for signaling.

The timeslot 16 must be included in a list of transmitted timeslots regardless of other timeslots if equipment connected by the modems requires a signaling channel, e.g. telco devices.

In the example above the timeslots 3 through 7 are used to carry voice channels and the timeslot 16 is used to transmit signaling. The modem recognizes all those timeslots as payload data, so the required DSL rate is 384 kbps.

4. Updating built-in modem firmware

Use the update command to update the built-in firmware of the Sigrand SG-16BG modem in the following order:

```
: update
Load new image? (y/n) Y
```

Upon entering procedure acknowledgement $\underline{\mathbf{Y}}$ the memory buffer is clearing and the prompt to download the image file appears here:

```
Clearing buffer memory... OK Loading image...
```

Then select the "Send Text File" option in the Send menu of the terminal program (here we suppose you are using HyperTerminal from standard Microsoft Windows shipment),

then specify location of the image file planned to load to the modem. Image files look like *.b64. Since the firmware can contain a few image files, the update procedure has to be performed for each file. Order of file updating may be arbitrary.

Отправить тек	стовый файл				? 🛛
<u>N</u> anka	😂 Sigrand		~	O 🕫 🖻 🕻	.
ЦЭ Недаение документы	eg16b25.b64				
() Рабочий стол					
🍎 Мон документы					
Мой компьютер					
	<u>И</u> мя файла:	sg16b25.b64		~	<u>О</u> ткрыть
Сетевое	⊥ип файлов:	Все файлы (*.*)		~	Отмена

```
Clearing buffer memory... OK
Loading image... OK
Checking image... OK, Type=SG16HOST V.2.5
Program new image? (y/n) Y
```

Enter acknowledgement Y to complete the write procedure:

```
Checking BootLoader... OK
Self-Programming... OK
Rebooting...
```

press \underline{N} or \underline{Esc} as a response to any prompt to cancel the update procedure:

```
: update
Load new image? (y/n) N
Update canceled!
:
```

Warranty and scope of liability

The Manufacturer warrants its Modem to be free from defects in materials and workmanship. This warranty applies only if the Purchaser has been used and maintained the Modem in accordance with the operating and maintenance directions given in this Guide. This warranty does not apply if the Modem has been subject to misuse, negligence, accident, fire or other casualty.

This warranty is valid for a period of 5 (five) years from either the purchase date as marked on the Warranty Coupon or the stated manufacturing date if the purchase date has not been marked. Subject to conditions and limitations set forth above and below, the Manufacturer will, at its option, either repair or replace the Modem that prove defective of improper workmanship or materials. The Manufacturer shall in no event be liable for any consequential, indirect or damages or expenses, lost revenues, lost profits, or any other incidental or consequential damages arising from the purchase, use or inability to use the modem, even if the Manufacturer has been advised of the possibility of such damages.

Warranty limitations:

Warranty is void for modems operating on wires having aerial sections.

MANUFACTURER ADDRESS

OOO "Sigrand", pr. Lavrentieva 6, Novosibirsk, Russia Phones +7 (383)-330-02-43, 332-94-37 Fax +7 (383)-332-02-43 www.sigrand.com

WARRANTY COUPON

For Sigrand SG-16BG modem

Serial number						
MFG date//200_year						
Quality checker	/					
Stamp						
Seller						
Address						
Phone						
Sale date						
Stamp						
Signature						
- *						
Purchaser						
Address						
Phone						
Purchase date						
Stamp						
Signature						

General specifications of TPP cable

Table I.1 Frequency response for twisted-pair cabling with copper conductor and PE-insulation (for reference only)

f,	Primary ratings			Secondary ratings			
kHz	R~, Ω/km	L, H/km*10 ⁻⁴	G,S/km*10 ⁻⁴	Ζ , Ω	α, dB/km		
	Conductor diameter 0.4 mm (26 AWG)						
20	278	5.51	1.13	225.2	6.81		
50	280	5.51	4.24	152.6	9.12		
100	283	5.50	11.3	125.7	10.3		
250	316	5.46	42.2	113.7	12.2		
500	394	5.35	120	110.5	15.6		
700	455	5.26	188	109.1	18.2		
1000	535	5.15	305	107.7	21.7		
Conductor diameter 0.5 mm (24 AWG)							
20	181	5.50	1.13	185.1	5.15		
50	182	5.50	4.24	133.3	6.48		
100	189	5.49	11.3	118.0	7.17		
250	234	5.40	42.2	111.6	9.21		
500	310	5.23	120	108.8	12.4		
700	361	5.26	188	107.4	14.6		
1000	424	5.04	305	106.3	17.2		

Conductor diameter	Loop resistance
(mm)	(Ω/km)
0.32	432
0.4	278
0.5	180
0.64	110

Table I.2 Cable loop resistance to conductor diameter ratio: