
N e v e r s t o p t h i n k i n g .

D
i s

t r
i b

u t
i o

n
w

i t
h

N
D

A
 o

n l
y

Port ing and Integrat ion Guide, Rev. 1.0, July 2005

Wirel ine Communicat ions

VINETIC® Driver
Voice and Internet Enhanced Telephony Inter face
Circui t

VINETIC®-4M (PEF 3314) Version 2.1/2.2
VINETIC®-4C (PEF 3394) Version 2.1/2.2
VINETIC®-4S (PEF 3304) Version 2.1
VINETIC®-4VIP (PEB 3324) Version 1.4
VINETIC®-2VIP (PEB 3322) Version 1.4
VINETIC®-0 (PEB 3320) Version 1.4
VINETIC®-2CPE (PEB 3332) Version 1.4

Edition 2005-07-27
Published by Infineon Technologies AG,
St.-Martin-Strasse 53,
81669 München, Germany
© Infineon Technologies AG 2005.
All Rights Reserved.

Attention please!
The information herein is given to describe certain components and shall not be considered as a guarantee of
characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding
circuits, descriptions and charts stated herein.

Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).

Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in
question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.

http://www.infineon.com

Template: template_A4_3.0.fm / 3 / 2005-03-10

Trademarks
ABM®, ACE®, AOP®, ARCOFI®, ASM®, ASP®, DigiTape®, DuSLIC®, EPIC®, ELIC®, FALC®, GEMINAX®, IDEC®,
INCA®, IOM®, IPAT®-2, ISAC®, ITAC®, IWE®, IWORX®, MUSAC®, MuSLIC®, OCTAT®, OptiPort®, POTSWIRE®,
QUAT®, QuadFALC®, SCOUT®, SICAT®, SICOFI®, SIDEC®, SLICOFI®, SMINT®, SOCRATES®, VINETIC®,
10BaseV®, 10BaseVX® are registered trademarks of Infineon Technologies AG. 10BaseS™, ConverGate™,
EasyPort™, VDSLite™ are trademarks of Infineon Technologies AG. Microsoft® and Visio® are registered
trademarks of Microsoft Corporation, Linux® of Linus Torvalds, and FrameMaker® of Adobe Systems Incorporated.

VINETIC® Driver Voice and Internet Enhanced Telephony Interface Circuit
CONFIDENTIAL
Revision History: 2005-07-27, Rev. 1.0
Previous Version:
Page Subjects (major changes since last revision)

Porting and Integration Guide 4 Rev. 1.0, 2005-07-27

CONFIDENTIAL

VINETIC® Driver

Table of Contents . 4

Preface . 6

1 Porting to Operating System . 7
1.1 Operating System Macros . 7
1.2 Operating System Files . 8
1.2.1 Macros Adaptation File . 8
1.2.2 VINETIC® Driver Operating System File . 8

2 Porting to Hardware System . 10
2.1 Clocking Considerations . 10
2.2 Reset Considerations . 10
2.3 Endianess Considerations . 12
2.4 Access Mode Considerations . 12
2.5 Interrupt Considerations . 13
2.6 SLIC Considerations . 13
2.6.1 Line modes . 13
2.6.2 CRAM Coefficients . 13
2.7 Multiple VINETIC® Chips Support . 14
2.7.1 Shared Interrupt Concept . 14
2.7.2 Shared Reset Line . 14
2.8 Other System Considerations . 14
2.9 VINETIC® Driver System Configuration File . 15

3 Integrating the VINETIC® Driver . 17
3.1 Relevant Compiler Options . 17
3.2 Data Types . 17
3.3 Relevant Driver Interfaces for the Integration . 18
3.3.1 VINETIC® Basic Device Initialization . 18
3.3.2 VINETIC® Device Reset . 19
3.3.3 VINETIC® Access . 19
3.3.3.1 VINETIC® Parallel Access . 19
3.3.3.2 VINETIC® SPI Access . 19
3.4 VINETIC® Driver Integration . 20
3.4.1 Integration’s Big Picture . 20
3.4.2 Integration Details . 21
3.4.2.1 Step 0 . 22
3.4.2.2 Step 1 . 22
3.4.2.3 Step 2 . 22
3.4.2.4 Step 3 . 22
3.4.2.5 Step 4 . 23
3.4.2.6 Step 5 . 23
3.4.2.7 Step 6 . 23
3.4.2.8 Step 7 . 23
3.4.3 Advanced Integration Code Example . 23
3.5 Line Testing Integration . 25

4 Quick Reference . 26
4.1 I/O Control Reference . 26
4.1.1 FIO_VINETIC_BASICDEV_INIT . 26
4.1.2 FIO_VINETIC_DEV_RESET . 26

Table of Contents

Porting and Integration Guide 5 Rev. 1.0, 2005-07-27

CONFIDENTIAL

VINETIC® Driver

4.2 Structures . 26
4.2.1 VINETIC_BasicDeviceInit_t . 26
4.3 Enumerator Reference . 27

 27

References . 28

CONFIDENTIAL

VINETIC® Driver

Porting and Integration Guide 6 Rev. 1.0, 2005-07-27

Preface
This document, the VINETIC® Driver Porting and Integration Guide Rev. 1.0, is valid for the following VINETIC®

codecs:

VINETIC®-4M (PEF 3314) Version 2.1/2.2
VINETIC®-4C (PEF 3394) Version 2.1/2.2
VINETIC®-4S (PEF 3304) Version 2.1
VINETIC®-4VIP (PEB 3324) Version 1.4
VINETIC®-2VIP (PEB 3322) Version 1.4
VINETIC®-0 (PEB 3320) Version 1.4
VINETIC®-2CPE (PEB 3332) Version 1.4

The VINETIC® driver is a platform independent driver software consisting of an operating system layer and an
operating system independent generic part. This driver is intended to run on each system integrating the
VINETIC® chip. Therefore, this document is (only) intended to guide the porting as well as the integration of the
VINETIC® driver on a new system under consideration of its operating system and its hardware platform.

Porting and Integration Guide 7 Rev. 1.0, 2005-07-27

CONFIDENTIAL

VINETIC® Driver

Porting to Operating System

1 Porting to Operating System
This chapter addresses porting issues related to the used operating system.

1.1 Operating System Macros
A super set of operating system macros is defined and used throughout the VINETIC® driver, making the driver
operating system independent. Table 1 lists these operating system macros abstractions and gives a rough
overview. For more details, refer to appropriate header file which is part of the source code (see Chapter 1.2).

Table 1 Operating Systems Macros
Name Description
Hardware Macros, defined in Board Support Package (BSP).
IFXOS_UC_BASE Returns the microprocessor base address.
__BYTE_ORDER Defines the microprocessor endianess which will be considered in the driver:

__LITTLE_ENDIAN for a little endian and __BIG_ENDIAN for a big endian
system.

Memory Management Macros
IFXOS_MALLOC(...) Allocates memory.
IFXOS_FREE(...) Frees memory.
IFXOS_CPY_USR2KERN(...) Copies data from user to kernel space.
IFXOS_CPY_KERN2USR(...) Copies data from kernel to user space.
Interrupt Management Macros
IFXOS_INTSTAT Interrupt status data type.
IFXOS_LOCKINT(...) Locks interrupt handling.
IFXOS_UNLOCKINT(...) Unlocks interrupt handling.
IFXOS_IRQ_DISABLE(...) Disables interrupt.
IFXOS_IRQ_ENABLE(...) Enables interrupt.
Time Management Macros
IFXOS_Wait(...) Delays execution with task schedule.
IFXOS_DELAYMS(...) Short active delay in milliseconds without schedule.
IFXOS_DELAYUS(...) Short active delay in microseconds without schedule.
Event Type and Event Handling Macros
Events are used for the communication between high priority tasks or interrupt and other tasks (e.g: to signalize
a task sleeping on an event that the event has occurred).
IFXOS_event_t Event data type.
IFXOS_WAIT_FOREVER Waits forever.
IFXOS_NOWAIT Never waits.
IFXOS_InitEvent(...) Initializes an event.
IFXOS_WakeUpEvent(...) Signals an event.
IFXOS_ClearEvent(...) Resets an event to the initial state.
IFXOS_WaitEvent_timeout(...) Waits for a specified event with a specified timeout to occur or timed out.
IFXOS_WaitEvent(...) Waits for a specified event with a specified condition to occur or timed out.
Mutex Type and Mutex Macros
Mutexes are used to protect critical sections against race conditions. They have several names across operating
systems, but are all considered as mutexes by the VINETIC® driver.

CONFIDENTIAL

VINETIC® Driver

Porting to Operating System

Porting and Integration Guide 8 Rev. 1.0, 2005-07-27

Nevertheless, some operating system files must be ported or implemented for the VINETIC® driver to be fully
operational with the used operating system. This is the topic of Chapter 1.2.

1.2 Operating System Files
This chapter addresses the operating systems files which must be adapted or implemented for a full operating
system compatibility.

1.2.1 Macros Adaptation File
The operating system macros listed in Chapter 1.1 are all implemented in a central header file called
<sys_drv_ifxos.h>, where they are mapped to the appropriate operating system calls to insure the functionality
behind them. This header file is part of the released source code and must be adapted for any new, yet
unsupported operating system.
Under Linux® and VxWorks®, theses macros are fully integrated and supported. They essentially map operating
system specific types or functions.
Therefore, wrappers must be implemented in this file in case the used operating system doesn’t support any of
the functionalities behind the macros and types defined in Chapter 1.1 (e.g: wrapper for events, mutexes,
poll/select).

1.2.2 VINETIC® Driver Operating System File
The operating system interface must be implemented in a file called drv_vinetic_<os>.c1). This file represents the
operating system abstraction layer of the VINETIC® driver. Under Linux® and VxWorks® operating systems
(which are currently supported), this file implements the common known UNIX-like interface
open/close/ioctl/read/write and a select mechanism, as well as an entry and an exit function for the registration
and unregistration of the driver.

IFXOS_Mutex_t Mutex data type.
IFXOS_MutexInit(...) Initializes mutex.
IFXOS_MutexLock(...) Locks/takes the mutex.
IFXOS_MutexUnlock(...) Unlocks/Gives the mutex.
IFXOS_MutexDelete (...) Deletes a mutex element.
Selecting and Polling
The poll/select mechanism is used for user application synchronization after occurrence of particular events (e.g:
signalization to application, that data is ready for reading)
IFXOS_wakelist_t Wakeup data type for select wait queues.
IFXOS_Init_WakeList(...) Initializes a queue.
IFXOS_SleepQueue(...) Initializes the sleep on a given queue.
IFXOS_WakeUp(...) Wakes up a waiting queue in poll/select.
IFXOS_WRITEQ Defines a write queue.
IFXOS_READQ Defines the read queue.
IFXOS_SYSWRITE Flag which signalizes that the system event for write is ready.
IFXOS_SYSREAD Flag which signalizes that the system event for read is ready.

1) <os> is the placeholder for the name of the operating system (e.g. drv_vinetic_linux.c, drv_vinetic_vxworks.c)

Table 1 Operating Systems Macros (cont’d)
Name Description

Porting and Integration Guide 9 Rev. 1.0, 2005-07-27

CONFIDENTIAL

VINETIC® Driver

Porting to Operating System

Attention: The select mechanism is used to support non blocking I/O operations (e.g.: read/write) between
an application and the underlying driver. This mechanism is fully supported under Linux® (poll
method) and VxWorks® (select method) operating systems. In case the used operating system
doesn’t support this mechanism, an emulation must be implemented.

CONFIDENTIAL

VINETIC® Driver

Porting to Hardware System

Porting and Integration Guide 10 Rev. 1.0, 2005-07-27

2 Porting to Hardware System
This chapter addresses hardware related issues to ensure that the VINETIC® driver runs on it without problems.
Attention: This is not a hardware integration guide. For VINETIC® chip related hardware integration, refer

to the VINETIC® Data Sheets and the Hardware Design Guide [20] as listed on the Page 27.

2.1 Clocking Considerations
There are specific clocking requirements according to the VINETIC® chip version actually used. These
requirements are fully specified in the appropriate VINETIC® Data Sheet where following main requirements are
stated:
• VINETIC®-4VIP/-2VIP/-0/-2CPE Version 1.4 needs at least three clocks to work properly: the master clock

(MCLK), the frame synchronization clock (FSC) and the PCM Interface clock (PCL). These three clocks are
mandatory and must be provided at all times regardless of the application to ensure the operation of the
VINETIC® device. Also, the hardware designer must make sure that the master clock (MCLK) is phase-locked
to PCM Interface clock (PCL) and the frame synchronization FSC, whereby it is recommended to directly
connect MCLK and PCL.

• VINETIC®-4M/-4C Version 2.1/2.2 and VINETIC®-4S Version 2.1 require the continuous presence of the frame
synchronization clock (FSC) and the PCM Interface clock (PCL) to have the VINETIC® device operation
ensured. Also, the hardware designer must make sure that the PCM interface clock (PCL) is phase-locked to
the frame synchronization (FSC)

Clock synchronization problems are reported by the VINETIC® chip hardware status register (HWSR1) and are of
two categories:
• Clock divider synchronization failure: SYNC-FAIL
• PLL synchronization failure: MCLK-FAIL
Note: The clock settings must be done properly before using the VINETIC® driver. The VINETIC® chip will not work

properly if there are clock problems and therefore also not the VINETIC®driver which interacts with the
VINETIC®.

2.2 Reset Considerations
A hardware reset of the VINETIC® chip is initiated by a power-on reset or by a hardware reset. A hardware reset
requires setting the signal at the RESETQ input pin to low-level for at least 4 µs. The reset input pin has a spike
rejection that will safely suppress spikes with a duration of less than 1 µs. By pulling the RESETQ input pin to low,
the chip will be reset (see Figure 1) and the following actions will take place:
• All I/O pins are deactivated
• All outputs are inactive (e.g. DX1/DX2)
• The internal PLL is stopped
• Internal clocks are deactivated
• The chip is in a Reset State
With the rising edge of the reset signal all external clocks need to be already stable and then the following actions
will take place:
• Clock detection
• PLL synchronization
• Execution of the reset routine: after the reset routine has finished, an interrupt is generated and the RESET bit

in the ISR register is set
• The EDSP stays in boot state
• The ALM Modules (Analog Channels) are in PDH (Power Down High Impedance) mode.
The internal reset routine requires approximately 12 frames (12 × 125 µs = 1.5 ms) to be finished (including PLL
start-up and clock synchronization). First access to the VINETIC® is possible after the INTQ signal = 0.

Porting and Integration Guide 11 Rev. 1.0, 2005-07-27

CONFIDENTIAL

VINETIC® Driver

Porting to Hardware System

Figure 1 VINETIC® Reset Sequence

Therefore, it is mandatory to respect the reset active time (at least 4 µs) and the reset inactive time (at least 1.5
ms), otherwise the correct operation of the VINETIC® chip can not be guaranteed. The recommended software
flow is depicted in Figure 2.

Figure 2 VINETIC® Reset Operation Software Flow

t

RESET sequence

trej (>= 4 µs)

VINETIC internal reset routine

First access
to VINETIC possible,
chip in power down high
impedance (PDH)

Chip reset:
- all I/O pins deactivated (high impedance)
- all outputs inactive (e.g. DX1/DX2)
- internal PLL stopped
- internal clocks deactivated

~1.5 ms

all external
clocks stable

PLL startup and clock
synchronization

INTQ

Activate Device Reset Pin

Start

In case of a shared reset
line, all devices will be reset!

End

Vinetic_reset_operation

Wait Reset active time

Deactivate Device Reset Pin

Wait Reset inactive time

At least 4 microseconds

At least 2 milliseconds

Reset activation and
deactivation can be done
in two separated flows.

Once this whole reset sequence
is completed, the VINETIC chip

can be accessed.

CONFIDENTIAL

VINETIC® Driver

Porting to Hardware System

Porting and Integration Guide 12 Rev. 1.0, 2005-07-27

Note: The VINETIC® driver does not provide a VINETIC® hardware reset functionality. The implementation of this
operation is left to the system integrator.

2.3 Endianess Considerations
The operating system header file which contains the endianess information (little/big endian) must be included in
the file <sys_drv_ifxos.h> and the hardware generic macro __BYTE_ORDER must be set either to
__LITTLE_ENDIAN or to __BIG_ENDIAN according to the used endianess (see Chapter 1.1). This setting is
important and required for the handling of 8-bit data which should be converted in other data types (e.g: 8-bit to
16-bit, 8-bit to 32-bit).
Attention: It is mandatory to update the file <sys_drv_ifxos.h> in case the used operating system is not

yet supported.

2.4 Access Mode Considerations
The digital interfaces of the VINETIC® are operated by a programmable host interface controller and allow flexible
and easy adaptation to various interfaces. For programming the VINETIC® and performing data/packet transfer
to/from the VINETIC®, a parallel interface or a serial micro controller interface ca be used. Additionally, the
VINETIC® is equipped with a PCM data interface.
The parallel interface can be operated in 8/16-bit Intel mode (multiplexed/de multiplexed) or in 8/16-bit Motorola
mode.
The VINETIC® serial micro controller interface (µC interface = SCI) is compatible with the Motorola SPI.
The VINETIC® PCM interface has two PCM highways and can be operated together with the serial µC interface
or the parallel interface.
With these access interfaces, the VINETIC® device supports the widely used micro controllers: e.g. MPC850,
MPC860, MPC8260, C165UTAH, MIPS and ARM derivatives, etc. All parallel and serial interfaces (host
interfaces) use the same (multiplexed) pins. The desired interface type is selected by means of pin strapping with
the pins IFSEL0, IFSEL1, IFSEL2 and IFSEL3 (IFSEL3 only with some specific VINETIC® pin packages).
Therefore, it is up to the hardware designer either to set the access mode (fixed pin settings) or by using a logic
(e.g. CPLD) between the micro controller and the VINETIC®. Refer to VINETIC® Data Sheets (see Page 28) for
more details about VINETIC® interfaces.
Note: The VINETIC® driver expects the selected access mode via a dedicated interface for its internal mappings

at initialization time (see Chapter 3.3.1). To support the serial micro controller interface (SPI), the VINETIC®
driver requires the implementation of specific macros in its user configuration file (see Chapter 2.9 and
Chapter 3.3.3.2).

Attention: Regardless whether the PCM Interface is used or not, all clock sources (as described in
Chapter 2.1) must be provided all the time to ensure the correct operation of the VINETIC®
device.

Table 2 shows which access modes are allowed on different VINETIC® versions and specifies the action to take
to support this access mode.

Table 2 Access Mode Table
Access Mode Version Remark
Motorola 16-bit VINETIC®-4M/-4C/-4S V2.x

VINETIC®-4VIP/-2VIP/-0/-2CPE V1.4
–

Intel 16-bit Multiplexed VINETIC®-4M/-4C/-4S V2.x Does not work for V1.x (see [22])
Intel 16-bit Demultiplexed VINETIC®-4M/-4C/-4S V2.x

VINETIC®-4VIP/-2VIP/-0/-2CPE V1.4
–

Porting and Integration Guide 13 Rev. 1.0, 2005-07-27

CONFIDENTIAL

VINETIC® Driver

Porting to Hardware System

2.5 Interrupt Considerations
The hardware designer connects the VINETIC® interrupt line to the used micro controller. Therefore, the interrupt
line number used by the micro controller must be communicated to the VINETIC® driver, so that it can register its
interrupt routine. This is done during the VINETIC® driver initialization time (see Chapter 3.3.1).
Actually, the VINETIC® driver assumes that the interrupts are level-triggered. Therefore, it does not provide any
acknowledgement as needed by edge-triggered interrupts.
Attention: It is strongly recommended to use level-triggered interrupt to avoid losing interrupts while the

line is disabled, which often happens with edge-triggered interrupts.

By default, the VINETIC® driver uses the operating system calls for interrupt operations (e.g.
register/enable/disable/unregister interrupts). Nevertheless, for systems which implement a logic device for the
interrupt handling (e.g. FPGA controlling shared interrupt line), the VINETIC® driver provides a set of macros which
must be adapted for this purpose (see Chapter 2.8 and Chapter 2.9).

2.6 SLIC Considerations
As it is up to the hardware designer to choose which SLIC1) chips are suitable for the system being designed, this
chapter addresses the SLIC usage dependent (software) considerations.

2.6.1 Line modes
The supported line modes are dependent on the particular SLIC module used. For some SLICs, not all line modes
are supported as specified in [19]. Refer to [9], [10] and [12] for more details.

2.6.2 CRAM Coefficients
CRAM coefficients (*.BYT files) are SLIC dependent. They must be calculated using the VINETICOS software
(available on the VINETIC® Tool Package CD) and are downloaded channel-wise or device-wise (broadcast) to
the VINETIC® with the interface FIO_VINETIC_DOWNLOAD_CRAM or during the VINETIC® TAPI initialization.
CRAM coefficients download is actually a user task. Therefore, the driver doesn’t download any default CRAM
coefficients automatically.
Note: Please take care to select the appropriate BYT file for the used hardware.

Motorola 8-bit VINETIC®-4M/-4C/-4S V2.x
VINETIC®-4VIP/-2VIP/-0/-2CPE V1.4

V1.4 requires PHI download (see [18])

Intel 8-bit Multiplexed Big
Endian

None See [22]

Intel 8-bit Demultiplexed
Big Endian

VINETIC®-4VIP/-2VIP/-0/-2CPE V1.4 V1.4 requires PHI download (see [18])

Intel 8-bit Multiplexed
Little Endian

VINETIC®-4M/-4C/-4S V2.x –

Intel 8-bit Demultiplexed
Little Endian

VINETIC®-4M/-4C/-4S V2.x –

SCI (SPI Mode) VINETIC®-4M/-4C/-4S V2.x
VINETIC®-4VIP/-2VIP/-0/-2CPE V1.4

–

1) SLIC = Subscriber Line Interface Circuit

Table 2 Access Mode Table (cont’d)
Access Mode Version Remark

CONFIDENTIAL

VINETIC® Driver

Porting to Hardware System

Porting and Integration Guide 14 Rev. 1.0, 2005-07-27

Example
VINETIC_IO_CRAM ioCram;
IFX_int32_t ret;

memset(&ioCram,0, sizeof (VINETIC_IO_CRAM));
ioCram.bBroadCast = 1;
ioCram.nFormat = VINETIC_IO_CRAM_FORMAT_2_1;
ioCram.nStartAddr = VINETIC_COP_START_ADDRESS;
ioCram.nLength = sizeof (VINETIC_COEFF)/2;
ioCram.nCRC = VINETIC_CRAM_CRC;
ioCram.bcr1.nData = VINETIC_COEFF_BCR[0][0];
ioCram.bcr1.nMask = VINETIC_COEFF_BCR[0][1];
ioCram.bcr2.nData = VINETIC_COEFF_BCR[1][0];
ioCram.bcr2.nMask = VINETIC_COEFF_BCR[1][1];
ioCram.tstr2.nData = VINETIC_COEFF_TSTR2[0][0];
ioCram.tstr2.nMask = VINETIC_COEFF_TSTR2[0][1];
memcpy(ioCram.aData, VINETIC_COEFF, sizeof (VINETIC_COEFF));

ret = ioctl(fdVinChan, FIO_VINETIC_DOWNLOAD_CRAM,(int)&ioCram);

2.7 Multiple VINETIC® Chips Support
The VINETIC® driver is designed to support several VINETIC® devices at once. Therefore, the VINETIC® device
number must be provided using the compiler macro VINETIC_MAX_DEVICES:
-DVINETIC_MAX_DEVICES=<system device number>.

The value is set by default to 1.
In case that the driver must support more than one VINETIC® device, shared interrupts and reset lines come into
consideration. These topics are discussed in the following chapters.
Attention: It is mandatory to specify how many VINETIC® devices are on the system being integrated when

compiling the VINETIC® driver for that system. Otherwise, the VINETIC® driver assumes that the
system has only one VINETIC® device and also supports only one device.

2.7.1 Shared Interrupt Concept
If several VINETIC® devices are connected to only one micro controller interrupt line, the VINETIC® driver provides
shared interrupt support for Linux® and VxWorks® operating systems. If instead the shared interrupt line is
controlled by a logic device (e.g. FPGA device), the VINETIC® driver provides a set of macros which must be
adapted accordingly (see Chapter 2.5 and Chapter 2.9).
Attention: The shared interrupt support implementation must be done for all currently unsupported

operating systems (see Chapter 1.2.2 for more details).

2.7.2 Shared Reset Line
If the reset line is shared by several VINETIC® devices, all these chips will be reset when the reset pin is activated
and deactivated (see Chapter 2.2). This must be taken into account in the system software design, which must
provide a mechanism to reset each VINETIC® device separately without influence on the other running devices.

2.8 Other System Considerations
This chapter comprises some VINETIC® driver system considerations which make it necessary to implement a
system abstraction layer file in addition to the already provided VINETIC® driver interfaces for the integration. The
reason for this is that these system considerations could not be addressed by means of the provided interfaces.

Porting and Integration Guide 15 Rev. 1.0, 2005-07-27

CONFIDENTIAL

VINETIC® Driver

Porting to Hardware System

Considering system differences, a list on several systems usable (optional) system macros was defined.
The driver uses these macros for special system parameters which can be overruled by a user configuration file
(see Chapter 2.9).
This ensures the flexibility needed by the VINETIC® driver which has to support several system implementations
without increased complexity.
List of the (optional) system macros (set at compile time):
• PARACCESS_CS_RECOVER(...)

This macro is intended for systems which need a specific chip select recovery after each chip access (e.g:
AM5120). For other systems, the macro is by default empty.

• VIN_DISABLE_IRQLINE(...)/ VIN_ENABLE_IRQLINE(...)
These macros are intended to map the enable/disable IRQ routines for systems not using the operating system
methods for this action (e.g. FPGA device controls interrupt handling). They are by default mapped to the
appropriate operating system routines.

• VIN_SYS_REGISTER_INT_HANDLER(...) / VIN_SYS_UNREGISTER_INT_HANDLER(...)
These macros are intended for the registration / deregistration of the interrupt handler in case that the operating
system routines aren’t suitable for this purpose (e.g. user implements his own assembler routines for theses
purposes). They are by default mapped to the operating system routines (see Chapter 1.1).

• VIN_1X_PARACC_MUX_SHIFT / VIN_2X_PARACC_MUX_SHIFT / VIN_PARACC_SHIFT
Theses macros define the (<<) shift factor to apply to the VINETIC® chip access addresses NWD, EOM and
DIA in multiplexed and in non multiplexed mode. They are adaptation factors for the microprocessor
addressing (e.g: If it is not possible to access odd addresses on a specific microprocessor, the factor will be
set to 1, so that only even addresses are accessed). These macros are also part of the user configuration
header file and can be adapted by each system when necessary.

2.9 VINETIC® Driver System Configuration File
The VINETIC® driver provides a system abstraction layer header file in which several (optional) system specific
macros can be redefined if needed to ensure full support of the system being integrated (e.g: Macros defined in
Chapter 2.8).
This file, called <drv_config_user.h>, is system specific (which means not common) and therefore must be
located in the system build directory.
The VINETIC® driver considers the macros defined in this file only if compiled with the specific compiler switch
’-DENABLE_USER_CONFIG’.
Note: Under Linux®, this macro is set when the argument --enable-user-config is passed to the configure/autogen

script.

A default template of this file, called <drv_config_user.default.h>, is available with the released source code.
This file contains system macros which can be adapted accordingly. Once adapted, the file must be placed in the
target build directory and renamed to <drv_config_user.h>.
A direct application of this file is the system dependent SPI support (see Chapter 2.4 and Chapter 3.3.3.2).
Table 3 shows a rough overview of system relevant macros defined in the file. For more details (e.g: about macros
parameters) please refer to the file itself.

Table 3 System optional Macros
Name Description
Error Setting Macro
SET_ERROR(...) Macro to signal and set an error. Useful to generate a trigger signal during

hardware debugging.
Ready Flag Timeout (only relevant for VINETIC®-4VIP)

CONFIDENTIAL

VINETIC® Driver

Porting to Hardware System

Porting and Integration Guide 16 Rev. 1.0, 2005-07-27

WAIT_RDY Number of accesses to ready flag (only relevant for VINETIC®-4VIP).
Optimization to minimum of processor access time. Default value is 500.

SPI Access Support Macros (usage enabled with -DVIN_SPI)
SPI_MAXBYTES_SIZE SPI buffer size in bytes (8-bit) according to the SPI driver.
SPI_CS_SET(...) Macro to set/unset SPI chip select.
spi_ll_read_write(...) Macro mapping the low-level SPI read/write routine, exported for example by

an SPI driver.
Parallel Access Support Macros
PARACCESS_CS_RECOVER Chip select recovery after a micro controller interface access, as needed by

some platforms using the MIPS-4KC controller (e.g. AM5120)
VIN_1X_PARACC_MUX_
SHIFT

Address shift factor (<<) needed for a VINETIC®-4VIP/-2VIP/-0/-2CPE Version
1.4 parallel intel mux access, dependent on the data bus connection and the
processor architecture. Default is 0, meaning no shift. Access done only on
even addresses (NWD = 0x02, EOM = 0x04).

VIN_2X_PARACC_MUX_
SHIFT

Address shift factor (<<) needed for a parallel intel mux access on VINETIC®-
4M/-4C Version 2.1/2.2 and VINETIC®-4S Version 2.1, depends on the data
bus connection and the processor architecture. Default is 1, meaning access
only through even addresses: NWD=0x02 and EOM=0x03 are shifted.

VIN_PARACC_SHIFT Address shift factor (<<) needed for a VINETIC® parallel access, exclusive intel
mux access, depends on the data bus connection and the processor
architecture. Default is 0 (no shift). Access possible on even (NWD = 0x02) and
odd (EOM = 0x03) addresses.

Interrupt Operations Support Macros (in case OS methods aren’t suitable)
VIN_DISABLE_IRQLINE(...) Macro to disable the interrupt line specified, by default set to OS method (see

Chapter 1.1).
VIN_ENABLE_IRQLINE(...) Macro to enable the interrupt line specified, by default set to OS method (see

Chapter 1.1).
VIN_SYS_REGISTER_INT_
HANDLER(...)

Macro which maps the function taking care of the interrupt handler registration,
by default set to OS method implemented in OS file (see Chapter 1.2).

VIN_SYS_UNREGISTER_INT_
HANDLER(...)

Macro which maps the function taking care of the interrupt handler
unregistration, by default set to OS method implemented in OS file (see
Chapter 1.2).

Table 3 System optional Macros (cont’d)
Name Description

Porting and Integration Guide 17 Rev. 1.0, 2005-07-27

CONFIDENTIAL

VINETIC® Driver

Integrating the VINETIC® Driver

3 Integrating the VINETIC® Driver
This chapter addresses the issues which must be considered when integrating the VINETIC® driver on a specific
system.

3.1 Relevant Compiler Options
Table 4 shows the set of VINETIC® driver relevant compiler switches which can be used when compiling the
VINETIC® driver. Operating system specific switches are not described here (refer to the operating system
manuals).
A template configuration file (drv_config.h.in) comprising all relevant compiler switches is part of the VINETIC®

driver source code distribution and can be used as example. Refer to the VINETIC® driver readme file located in
the driver top directory for more details.
Note: For the Linux® operating system, the switches described here are mapped to configure / autogen.sh options.

After generation of the Makefile, a driver configuration file, called drv_config.h, is generated in the build
directory. It contains the set of compiler settings used for the built target.

3.2 Data Types
Original data types are used for operating system specific functions and variables within the operating system
adaptation files <drv_vinetic_<os>.c>. In any other VINETIC® driver source file, only IFX types are used as
referenced in Table 5. This helps to avoid the type mismatch across several software components implemented
by several developers.

Table 4 VINETIC® Driver Compiler Options
Name Description
-DVIN_8BIT Enables 8-bit bus access support in the VINETIC® driver.
-DVIN_SPI Enables SPI access support in the VINETIC® driver. This needs the user

configuration header file (see Chapter 3.3.3.2).
-DVIN_V14_SUPPORT Enables support of VINETIC®-4VIP/-2VIP/-0/-2CPE Version 1.4 in the VINETIC®

driver.
-DVIN_V21_SUPPORT Enables support of the VINETIC®-4M/-4C/-4S version 2.1 or greater in the

VINETIC® driver.
-DVIN_DEFAULT_FW Includes default firmware c header files at compilation time for VINETIC®-4VIP

Version 1.4.
-DVINETIC_MAX_DEVICES=X Sets the number of VINETIC® devices the VINETIC® driver should support.
-DENABLE_TRACE Enables debugging traces at VINETIC® driver runtime.
-DRUNTIME_TRACE Enables runtime traces of register access in VINETIC® driver. Previous option -

DENABLE_TRACE must be also set.
-DENABLE_USER_CONFIG Includes the user configuration header file in the VINETIC® driver. User defined

macros will then be used instead of default macros (see Chapter 2.9).
-DTAPI_VOICE Enable support of TAPI Voice over IP connection services in the VINETIC®

driver.
-DTAPI_FAX_T38 Enables support of TAPI T38 Fax features in the VINETIC® driver.
-DTAPI_CID Enables support of TAPI CID features in the VINETIC® driver.
-DTAPI_DTMF Enables support of TAPI DTMF features in the VINETIC® driver.
-DTAPI_LT Enables support of TAPI Line testing in the VINETIC® driver.
-DTAPI_GR909 Enables support of TAPI GR909 in the VINETIC® driver.

CONFIDENTIAL

VINETIC® Driver

Integrating the VINETIC® Driver

Porting and Integration Guide 18 Rev. 1.0, 2005-07-27

Note: These types are defined in the header file <ifx_types.h> which is part of the released source code.

3.3 Relevant Driver Interfaces for the Integration
The following chapters describe the relevant interfaces used for the integration of the VINETIC® driver in a system
with respect to the hardware considerations listed in Chapter 2.

3.3.1 VINETIC® Basic Device Initialization
The application controlled basic device initialization is the first action to be executed by the VINETIC® driver for
each device available in the system. For this purpose, the VINETIC® driver has a dedicated interface called
FIO_VINETIC_BASICDEV_INIT (see Chapter 4.1.1) which expects the following parameters:
1. The VINETIC® access mode, which must be set along with the system initialization (see Chapter 4.3),
2. The VINETIC® device physical base address, which is known by the system and applicable only for parallel

access (see Chapter 3.3.3),
3. The VINETIC® device irq line number known by the system. If the parameter is negative, polling mode is

assumed.
During the basic device initialization, following actions take place:
1. In case of parallel access, VINETIC® access addresses for NWD, EOM and DIA are set.
2. Low-level access function pointers are mapped according to the access mode (see Chapter 4.3).
3. When in interrupt mode, the interrupt routine is registered by the operating system.
After a successful basic initialization, following options are possible:
1. Chip access according to selected access mode (see Chapter 3.3.3),
2. Interrupt handling in case of interrupt mode,
3. Whole set of VINETIC® driver ioctl interfaces,
4. Complete TAPI ioctl interfaces.

Table 5 VINETIC® Driver Data Types
Name Description
IFX_char_t Character data type.
IFX_uint8_t Unsigned 8-bit data type.
IFX_int8_t Signed 8-bit data type.
IFX_uint16_t Unsigned 16-bit data type.
IFX_int16_t Signed 16-bit data type.
IFX_uint32_t Unsigned 32-bit data type.
IFX_int32_t Signed 32-bit data type.
IFX_float_t Float data type.
IFX_void_t Void data type.
IFX_vuint8_t Volatile unsigned 8-bit data type.
IFX_vint8_t Volatile signed 8-bit data type.
IFX_vuint16_t Volatile unsigned 16-bit data type.
IFX_int16_t Volatile signed 8-bit data type.
IFX_vuint32_t Volatile unsigned 32-bit data type.
IFX_vint32_t Volatile signed 32-bit data type.
IFX_vfloat_t Volatile float data type.

Porting and Integration Guide 19 Rev. 1.0, 2005-07-27

CONFIDENTIAL

VINETIC® Driver

Integrating the VINETIC® Driver

3.3.2 VINETIC® Device Reset
When a single VINETIC® device is reset (see Chapter 2.2), the VINETIC® driver must be involved because the
underlying device data must also be reset. This is done via the command FIO_VINETIC_DEV_RESET (see
Chapter 4.1.2).
Note: If a basic device initialization (see Chapter 3.3.1) was done previously, it will not be modified and an

additional call to FIO_VINETIC_BASICDEV_INIT (see Chapter 4.1.1) is not necessary.

Example
The following example resets the VINETIC® device number 0. Every function prefixed with <system_> must be
provided by the system interface. It is assumed that the file descriptor of this VINETIC® device is available in the
example.
/* activate reset of vinetic device 0 */
ret = system_activate_reset (0);
/* deactivate reset of vinetic device 0 */
if (ret == IFX_SUCCESS)
 ret = system_deactivate_reset (0);
/* reset internal device data in vinetic driver */
if (ret == IFX_SUCCESS)
 ret = ioctl (fdVinDev [0], FIO_VINETIC_DEV_RESET, 0);

3.3.3 VINETIC® Access
As described in Chapter 2.4, the VINETIC® can be accessed via the following interfaces:
• Parallel interface (8 bit and 16 bit): direct access, defined in drv_vinetic_parallel.c
• Serial (SPI): Access via SPI module, defined in drv_vinetic_serial.c
These interfaces assure the sequential read/write of packet and command data to and from the VINETIC® device.
The chip access low-level functions are set according to the VINETIC® access mode settings within the VINETIC®

Basic Device Initialization (see Chapter 3.3.1).
Nevertheless, there are special considerations for the access modes described in the following chapters.

3.3.3.1 VINETIC® Parallel Access
The VINETIC® driver is provided with a set of functions pointers which are mapped according to the parallel access
mode settings. Nevertheless, the support of 8-bit access needs to be enabled at compile time with the compiler
switch -DVIN_8BIT. The support of the parallel access doesn’t require any user specific adaptation, unless the
access addresses must be interpreted differently. For this purpose, the set of shift factors defined in the user
configuration file can be used (see Chapter 2.8 and Chapter 2.9).
Note: The VINETIC® driver implicitly supports the 16-bit access. No compiler switch is therefore needed for this

access mode.

3.3.3.2 VINETIC® SPI Access
To enable the SPI support in the VINETIC® driver, the extra compiler switch -DVIN_SPI must be used during
compilation.
Note: In case of Linux®, SPI access is compiled when --enable-spi is passed as argument on the configure script

or autogen.sh script

When compiled with -DVIN_SPI, the VINETIC® driver provides generic SPI low-level routines
(drv_vinetic_serial.c/h) and expects some macros to be set in the user configuration header file (see Chapter 2.9).
These macros are:

CONFIDENTIAL

VINETIC® Driver

Integrating the VINETIC® Driver

Porting and Integration Guide 20 Rev. 1.0, 2005-07-27

• SPI_MAXBYTES_SIZE, which indicates how many bytes can be read or written in one go via the SPI interface
• SPI_CS_SET (devnr, high_low), which sets the device SPI chip select to low or to high
• Spi_ll_read_write (txptr, txsize, rxptr, rxsize), which is mapped to the exported system low-level spi read/write

routine
Once these adaptations are done, the VINETIC® SPI access will fully work with the VINETIC® driver.
Note: The SPI interface was successfully integrated and tested with the EASY 334 platform. For this platform, a

PowerPC SPI driver is available and exports low-level read/write functions.

Attention: The PowerPC SPI driver must be compiled with -DNO_MUTEX_SPI to avoid use of mutexes
within the exported low-level SPI functions.

3.4 VINETIC® Driver Integration
The VINETIC® driver controls the communication with the VINETIC® chip and doesn’t take care of any hardware
or system configuration.
Therefore, all system or platform relevant initialization and control tasks have to take place in separate software
modules which must be implemented when integrating the VINETIC® driver. This makes the VINETIC® driver
platform independent and reduces the porting issues on all platforms.
The following chapters describe the steps needed for the complete integration of the VINETIC® driver on a new
system.

3.4.1 Integration’s Big Picture
The initialization of the system (access mode, clock rate, interrupt line, chip select) must take place at system level
before the VINETIC® driver is integrated. After this step, each VINETIC® device must be initialized via a provided
driver interface (see Chapter 3.3.1) and then it must be again initialized individually i.e. with the TAPI initialization
interface. Figure 3 shows the complete integration flow:

Porting and Integration Guide 21 Rev. 1.0, 2005-07-27

CONFIDENTIAL

VINETIC® Driver

Integrating the VINETIC® Driver

Figure 3 VINETIC® Driver Integration Flow

3.4.2 Integration Details
Software support must be provided for each hardware system integrating one or more VINETIC® devices. This
support can be provided in form of a system driver (commonly called board driver) or in form of a BSP1). The
following steps from 0 to 7 described below lead to a successful integration of the VINETIC® driver on a system.
Attention: In the description below, functions or macros prefixed with <system> or <SYSTEM> represent

a pseudocode example of functionalities required by the system software. This does not mean
that all macros/functions implemented by the system software must be prefixed as stated
above. It is only important that the functionality behind the pseudocode is granted. Real life
example were added for the EASY 334 system. For this system, a user library interface with an
appropriate board driver has been implemented. All functions calls are from this library.

1) BSP means Board Support Package. This support can be provided as an example by or integrated to the used operating
system.

Initialize System
(Board, Platform)

Start

This is done at system level and
comprises:
- access mode settings
- chip select settings
- interrupt line configuration

Initialize this VINETIC Vinetic
device using

FIO_VINETIC_BASICDEV_INIT

For each device, following system
parameters are needed:
- device access mode
- device physical base address
- device irq line number

End

From here on, the vinetic driver is
operational

Vinetic chip Initialization
(FW, CRAM, …), ie via Tapi

Initialization

Application initializes VINETIC chip
(i.e Tapi Init)

From here on, the vinetic chip is
operational

Activate reset line for this
VINETIC device

Deactivate reset line for this
VINETIC device

For each device on system

End For each device on system

Vinetic_driver_integration_flow

Before starting, make sure that the
power and the generated clocks are
conform to the values indicated in
datasheets

CONFIDENTIAL

VINETIC® Driver

Integrating the VINETIC® Driver

Porting and Integration Guide 22 Rev. 1.0, 2005-07-27

3.4.2.1 Step 0
Before setting up the VINETIC® driver, it must be verified that:
• The VINETIC® device is powered accordingly.
• The clocks are set properly (see Chapter 2.1).
Please refer to appropriate VINETIC® data sheets ([1], [2], [3], [4], [6], [7], [8]) for details.

3.4.2.2 Step 1
Initialize the system dependent on the used VINETIC® chip by setting the access mode (see Chapter 2.4), the
chip selects, the clock rate (see Chapter 2.1) and the interrupt lines (see Chapter 2.5).

Pseudo Code Example
ret = system_init (SYSTEM_16BIT_ACCESS_MODE, SYSTEM_2048KHZ_CLOCKRATE);

Note: This is an example. May be implemented differently in user’s system software.

Example
ret = easy334_init (EASY334_16BIT_ACCESS_MODE, EASY334_2048KHZ_CLOCKRATE);

3.4.2.3 Step 2
Activate the reset line for each VINETIC® device (see Chapter 2.2).

Pseudo Code Example
ret = system_activate_reset (SYSTEM_VINETIC_DEVICE_ONE);

Note: This is an example. May be implemented differently in user’s system software.

Example
/* EASY334 has only one vinetic device */
ret = easy334_activate_reset (0);

3.4.2.4 Step 3
Do basic device driver initialization of each VINETIC® device (see Chapter 3.3.1).
Attention: It is assumed that the VINETIC® driver is already installed and that all VINETIC® devices file

descriptors are available.

Example
VINETIC_BasicDeviceInit_t devInit;

memset (&devInit, 0, sizeof(devInit));
/* set access mode according to VIN_ACCESS enumeration */
devInit.AccessMode = VIN_ACCESS_PAR_16BIT;
devInit.nBaseAddress = 0xC0010000;
devInit.nIrqNum = 12;
ret = ioctl (fdVinDev, FIO_VINETIC_BASICDEV_INIT, &devInit);

Note: This implementation can be used as generic code to basically initialize each VINETIC® device. Values are
examples.

Porting and Integration Guide 23 Rev. 1.0, 2005-07-27

CONFIDENTIAL

VINETIC® Driver

Integrating the VINETIC® Driver

3.4.2.5 Step 4
Deactivate the reset line for the initialized VINETIC® device (see Chapter 2.2).

Pseudo Code Example
ret = system_deactivate_reset (SYSTEM_VINETIC_DEVICE_ONE);

Note: This is an example. May be implemented differently in user’s system software.

Example
ret = easy334_deactivate_reset (0);

3.4.2.6 Step 5
Read the version of the VINETIC® device as an access test.

Generic Code Example
VINETIC_IO_VERSION devVers;

memset (&devVers, 0, sizeof(devVers));
ret = ioctl (fdVinDev, FIO_VINETIC_VERS, &devVers);
if (ret == IFX_SUCCESS)
 printf ("VINETIC [version 0x%2X, type 0x%2X, channels %d] ready!\n\r",
 devVers.nChip, devVers.nType, devVers.nChannel);

Note: This implementation can be used as generic code to read the version of each VINETIC® device.

3.4.2.7 Step 6
Execute TAPI initialization (Firmware download/activation, CRAM download etc....) and feed the analog channels
lines for each channel on the VINETIC® device.

Example
TAPI_INIT tapiInit;

memset (&tapiInit, 0, sizeof(tapiInit));
tapiInit.nMode = TAPI_VOICE_CODER;
ret = ioctl (fdVinChan, IFXPHONE_INIT, &tapiInit);
if (ret == SUCCESS)
 ret = ioctl (fdVinChan, IFXPHONE_SET_LINEFEED, 0);

3.4.2.8 Step 7
Driver interface is operative with VINETIC® using appropriate functions (read/write, TAPI ioctls).

3.4.3 Advanced Integration Code Example
The following code example is a copy/paste integration code supposed to work on your platform with only small
modifications. It is a pseudo application code to bring up the VINETIC® driver in your system. It is assumed that
all VINETIC® devices file descriptors are available in the example.
Attention: Infineon Technologies can not guarantee that this code will work, as it is dependent on the

system. The order of the calls must not be changed.

CONFIDENTIAL

VINETIC® Driver

Integrating the VINETIC® Driver

Porting and Integration Guide 24 Rev. 1.0, 2005-07-27

Example
IFX_int32_t ret, nDevNum, nAccessMode, i;
VINETIC_BasicDeviceInit_t devInit;
VINETIC_IO_VERSION devVers;

memset (&devInit, 0, sizeof(devInit));
memset (&devVers, 0, sizeof(devVers));
/* initialize the system and get back number of vinetic devices.
 During this initialization, following will be initialized:
 - access mode
 - clock rate
 - chip select(s)
 - interrupt line
*/
ret = system_init (&nDevNum);
if (ret == IFX_ERROR)
{
 printf (“system initialization fails\n\r“);
 return ret;
}

/* in case of successful init, for all devices in the system:
 - read basic parameters from system interface
 - activate vinetic device reset line
 - do vinetic basic device initialization
 - deactivate vinetic device reset
 - read vinetic device version
*/
for (i = 0; i < nDevNum; i++)
{
 /* get basic parameters: access mode, base address, irq number */
 ret = system_get_parameter (i, &(devInit.AccessMode),
 &(devInit.nBaseAddress), &(devInit.nIrqNum));
 if (ret == IFX_ERROR)
 break;
 /* activate vinetic device reset line */
 ret = system_activate_reset (i);
 if (ret == IFX_ERROR)
 break;
 /* do basic device initialization */
 ret = ioctl (fdVinDev[i], FIO_VINETIC_BASICDEV_INIT, &devInit);
 if (ret == IFX_ERROR)
 break;
 /* deactivate vinetic device reset line now */
 ret = system_deactivate_reset (i);
 if (ret == IFX_ERROR)
 break;
 /* read vinetic device version as test */
 ret = ioctl (fdVinDev[i], FIO_VINETIC_VERS, &devVers);
 if (ret == IFX_ERROR)
 break;

Porting and Integration Guide 25 Rev. 1.0, 2005-07-27

CONFIDENTIAL

VINETIC® Driver

Integrating the VINETIC® Driver

 /* print out version */
 printf ("VINETIC [version 0x%2X, type 0x%2X, channels %d] ready!\n\r",
 devVers.nChip, devVers.nType, devVers.nChannel);
}

if (ret == IFX_ERROR)
 printf (“system integration fails in regard to vinetic\n\r“);

return ret;

3.5 Line Testing Integration
Floating point operations can not be done on the kernel level (where the driver runs) for some operating systems.
For line testing measurements therefore the driver passes the results to an application level software for
calculations. For this purpose, a TAPI line testing library is available. This library currently supports Linux® and
VxWorks® operating systems. In case the line testing support is needed for another operating system, this library
must be adapted (refer to [19] for more details).

CONFIDENTIAL

VINETIC® Driver

Quick Reference

Porting and Integration Guide 26 Rev. 1.0, 2005-07-27

4 Quick Reference
The references listed here are just related to the integration issue and offer a quick overview. For VINETIC® driver
references, include the file “vinetic_io.h“ (refer to [17] for more details).

4.1 I/O Control Reference
Lists I/O control related to the device initialization and reset.

4.1.1 FIO_VINETIC_BASICDEV_INIT
This interface must be called at first to initialize the VINETIC® driver with the chip parameters passed as pointer
to the structure VINETIC_BasicDeviceInit_t. No chip access will be done until this basic initialization is successful.
#define FIO_VINETIC_BASICDEV_INIT _IO(VINETIC_IOC_MAGIC, 200)

4.1.2 FIO_VINETIC_DEV_RESET
Resets internal data of the device.
#define FIO_VINETIC_DEV_RESET _IO(VINETIC_IOC_MAGIC, 201)

Note: Neither the (physical) reset pin/signal of the VINETIC®, nor the internal state of the EDSP will be affected by
this IOCTL.

4.2 Structures
This chapter addresses structure type definition issues.

4.2.1 VINETIC_BasicDeviceInit_t
Basic device initialization structure.
typedef struct {
 VIN_ACCESS AccessMode;

Table 6 I/O Control Defines
Name Description
FIO_VINETIC_BASICDEV_INIT Does the VINETIC® basic device initialization.
FIO_VINETIC_DEV_RESET Resets the device internal data structure.

Data type Name Description
Int fd Pointer to a file descriptor
Int FIO_VINETIC_BASICDEV_INIT I/O control identifier for this operation
Int param Use structure VINETIC_BasicDeviceInit_t

Data type Name Description
Int fd Pointer to a file descriptor
Int FIO_VINETIC_DEV_RESET I/O control identifier for this operation
Int param 0

Table 7 Structures Used
Name Description
VINETIC_BasicDeviceInit_t VINETIC® basic device initialization structure.

Porting and Integration Guide 27 Rev. 1.0, 2005-07-27

CONFIDENTIAL

VINETIC® Driver

Quick Reference

 unsigned long nBaseAddress;
 signed int nIrqNum,
}VINETIC_BasicDeviceInit_t;

4.3 Enumerator Reference
This chapter addresses the enumerator reference.

VINETIC® access modes (see Chapter 2.4):

Data type Name Description
VIN_ACCESS (see
Table 9)

AccessMode Access mode for VINETIC® device, 8 bit or 16 bit or serial
(SPI)

Unsigned long nBaseAddress VINETIC® physical base address
Signed int nIrqNum VINETIC® device irq number, as defined by the OS. If the irq

number is set to -1, the driver will be configured in polling
mode.

Table 8 Enumerator reference
Name Description
VIN_ACCESS (see Table 9) VINETIC® access modes

Table 9 VIN_ACCESS
Name Value Description
VIN_ACCESS_SPI 0 SPI access, V1.x/2.x.
VIN_ACCESS_SCI 0x01 SCI access, same as SPI access, V1.x /2.x.
VIN_ACCESS_PAR_16BIT 0x2 16-bit Motorola parallel access, V1.x/2.x.
VIN_ACCESS_PAR_8BIT 0x3 8-bit Motorola parallel access, V1.x/2.x.
VIN_ACCESS_PARINTEL_MUX16 0x4 16-bit Intel multiplexed parallel access, V2.x only
VIN_ACCESS_PARINTEL_MUX8 0x5 8-bit Intel multiplexed parallel access, V2.x only
VIN_ACCESS_PARINTEL_DMUX8_BE 0x6 8-bit Intel demultiplexed access, big endian, V1.x only
VIN_ACCESS_PARINTEL_DMUX8_LE 0x7 8-bit Intel demultiplexed access, little endian, V2.x only
VIN_ACCESS_PAR_8BIT_V2 0x8 8-bit parallel motorola access for VINETIC® V2.x. only

CONFIDENTIAL

VINETIC® Driver

Porting and Integration Guide 28 Rev. 1.0, 2005-07-27

References
[1] VINETIC®-4VIP (PEB 3324) Version 1.4 Prel. Data Sheet DS1, 2003-08-07

[2] VINETIC®-2VIP (PEB 3322) Version 1.4 Prel. Data Sheet DS1, 2003-08-07

[3] VINETIC®-2CPE (PEB 3332) Version 1.4 Prel. Data Sheet Rev. 3.0, 2005-07-18

[4] VINETIC®-0 (PEB 3320) Version 1.4 Prel. Data Sheet DS1, 2003-08-07

[5] Prel. Addendum Rev. 2.0 to VINETIC® Version 1.4 Prel. Data Sheet DS1, 2004-08-16

[6] VINETIC®-4M (PEF 3314) Version 2.1/Version 2.2 Prel. Data Sheet Rev. 2.0, 2004-11-10

[7] VINETIC®-4C (PEF 3394) Version 2.1/Version 2.2 Prel. Data Sheet Rev. 2.0, 2004-11-10

[8] VINETIC®-4S (PEF 3304) Version 2.1 Prel. Data Sheet Rev. 2.0, 2005-04-12

[9] VINETIC® Version 1.4 Prel. User's Manual – Software Description Rev. 2.0, 2004-10-19

[10] VINETIC®-4M/-4C (PEF 3314/-3394) Version 2.1/Version 2.2 Prel. User's Manual – Software Description
Rev. 2.0, 2005-01-20

[11] Prel. Addendum Rev. 1.0 to VINETIC®-4M/-4C (PEF 3314/-3394) Version 2.1/Version 2.2 Prel. User's
Manual – Software Description Rev. 2.0, 2005-06-30

[12] VINETIC®-4S (PEF 3304) Version 2.1 Prel. User's Manual – Software Description Rev. 1.0, 2005-03-22

[13] Prel. Addendum Rev. 1.0 to VINETIC®-4S (PEF 3304) Version 2.1 Prel. User´s Manual – Software
Description Rev. 1.0, 2005-06-30

[14] VINETIC® Version 1.4/2.1 Prel. User's Manual – EDSP Firmware Description Rev. 1.0, 2004-06-18

[15] VINETIC® Version 1.4/2.1/2.2 Prel. User's Manual – EDSP Firmware Description Rev. 2.0, in preparation

[16] VINETIC®-4M/-4C (PEF 3314/-3394) Version 2.2 EDSP Prel. Firmware Overview Rev. 2.0, 2005-06-14

[17] VINETIC® Prel. User's Manual Software Description - Driver Rev. 4.0, 2004-12-08

[18] VINETIC® Version 1.3/Version 1.4 Prel. Status Sheet PHI Download DS2, 2003-07-02

[19] VINETIC® (PEB/PEF 33xy) Version 1.4 and 2.1/2.2 Application Note Telephony API (TAPI) V2.3 Rev. 16,
2005-04-13

[20] VINETIC® Version 2.1/2.2 Preliminary Hardware Design Guide Rev. 2.0, 2005-05-19

[21] VINETIC® Version 2.1/2.2 Prel. Errata Sheets

[22] VINETIC® Version 1.4 Prel. Errata Sheets

[23] VINETIC® EDSP Firmware Release Notes

[24] VINETIC® Driver Software V0.11.8 Release Note Rev. 1.0

[25] VINETIC® Driver Software V1.0 Release Note Rev. 1.0

Published by Infineon Technologies AG

w w w . i n f i n e o n . c o m

http://www.infineon.com

	Table of Contents
	Preface
	1 Porting to Operating System
	1.1 Operating System Macros
	1.2 Operating System Files
	1.2.1 Macros Adaptation File
	1.2.2 VINETIC® Driver Operating System File

	2 Porting to Hardware System
	2.1 Clocking Considerations
	2.2 Reset Considerations
	2.3 Endianess Considerations
	2.4 Access Mode Considerations
	2.5 Interrupt Considerations
	2.6 SLIC Considerations
	2.6.1 Line modes
	2.6.2 CRAM Coefficients

	2.7 Multiple VINETIC® Chips Support
	2.7.1 Shared Interrupt Concept
	2.7.2 Shared Reset Line

	2.8 Other System Considerations
	2.9 VINETIC® Driver System Configuration File

	3 Integrating the VINETIC® Driver
	3.1 Relevant Compiler Options
	3.2 Data Types
	3.3 Relevant Driver Interfaces for the Integration
	3.3.1 VINETIC® Basic Device Initialization
	3.3.2 VINETIC® Device Reset
	3.3.3 VINETIC® Access
	3.3.3.1 VINETIC® Parallel Access
	3.3.3.2 VINETIC® SPI Access

	3.4 VINETIC® Driver Integration
	3.4.1 Integration’s Big Picture
	3.4.2 Integration Details
	3.4.2.1 Step 0
	3.4.2.2 Step 1
	3.4.2.3 Step 2
	3.4.2.4 Step 3
	3.4.2.5 Step 4
	3.4.2.6 Step 5
	3.4.2.7 Step 6
	3.4.2.8 Step 7

	3.4.3 Advanced Integration Code Example

	3.5 Line Testing Integration

	4 Quick Reference
	4.1 I/O Control Reference
	4.1.1 FIO_VINETIC_BASICDEV_INIT
	4.1.2 FIO_VINETIC_DEV_RESET

	4.2 Structures
	4.2.1 VINETIC_BasicDeviceInit_t

	4.3 Enumerator Reference

	References

