September 2006

Voice over IP Processor for Customer Premi

VINETIC®-CPE \!
ses Equipme

VINETIC®-CPE Device Driver
for

VINETIC®-2CPE (PEB/PEF 3332), V
VINETIC®-1CPE (PEB/PEF 3331), VZS
VINETIC®-2ATA (PEB 3342), \aersuon 2
VINETIC®-1ATA (PEB 3341), V

VINETIC®-CL (PEB 3340), Ver
VINETIC®-0 (PEB 3320), Version

VINETIC®-2PLUS (PEB 333 VerSIO
VINETIC®-1PLUS (PEB 33

Preliminary

User’s %u alQ
Programmer’s fereng%

Revision @ %)
:\

Communication Solutions

(infineon

Never stop thinking

Edition 2006-09-01

Published by
Infineon Technologies AG
81726 Miinchen, Germany

© Infineon Technologies AG 2006.
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values
stated herein and/or any information regarding the application of the device, Infineon Technologies hereby
disclaims any and all warranties and liabilities of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in
question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.

http://www.infineon.com

VINETIC®-CPE Voice over IP Processor for Customer Premises Equipment

CONFIDENTIAL

Revision History: 2006-09-01, Revision 1.2

Previous Version: VINETIC®-CPE Device Driver Prel. User’s Manual Driver and API Description Rev. 1.1,
2006-03-29

Page Subjects (major changes since last revision)

Maijor reorganization of the document.

The interfaces belonging to the TAPI driver (described in chapters 2, 3, 4 and 6) are now documented
in the TAPI User's Manual [5]. This reflects the new software architecture.

Added Chapter 2 and Chapter 3, content taken from the Porting and Integration Guide [12].
Added Chapter 4.

Trademarks

ABM®, ACE®, AOP®, Arcofi®, ASM®, ASP®, BlueMoon®, BlueNIX®, ConverGate®, C166®, DUALFALC®, DuSLIC®,
ELIC®, EPIC® FALC® GEMINAX®, IDEC® INCA®, IOM®, Ipat®-2, IPVD®, Isac® ITAC®, IWE®, IWORX®,
M-GOLD®, MUSAC®, MuSLIC®, OCTALFALC®, OCTAT®, POTSWIRE®, QUADFALC®, QUAT®, SCOUT®, SCT®,
SEROCCO®, S-GOLD®, SICAT®, SICOFI®, SIDEC®, SIEGET®, SLICOFI®, SMARTI®, SOCRATES®, VDSLite®,
VINETIC®, 10BaseS® are registered trademarks of Infineon Technologies AG.

DIGITAPE™, EasyPort™, E-GOLD™, E-GOLDIlite™, S-GOLDIlite™, S-GOLD2™, S-GOLD3™, VINAX™,
WildPass™, 10BaseV™, 10BaseVX™ are trademarks of Infineon Technologies AG.

Microsoft® and Visio® are registered trademarks of Microsoft Corporation. Linux® is a registered trademark of
Linus Torvalds. FrameMaker® is a registered trademark of Adobe Systems Incorporated. APOXI® is a registered
trademark of Comneon GmbH & Co. OHG. PrimeCell®, RealView®, ARM® are registered trademarks of ARM
Limited. OakDSPCore®, TeakLite® DSP Core, OCEM® are registered trademarks of ParthusCeva Inc.
IndoorGPS™, GL-20000™, GL-LN-22™ are trademarks of Global Locate. ARM926EJ-S™, ADS™ Multi-ICE™
are trademarks of ARM Limited.

Template: template_A4_3.0.fm / 3/ 2005-03-10

CONFIDENTIAL

VINETIC®-CPE
Chip Set Family

Table of Contents

1.1

1.1.1
1.1.2
113
1.2

1.2.1
1.2.2
1.3

1.3.1
1.3.2

21
2.2
2.3
2.3.1
232
233
24
2.4.1
242
243

3

3.1
3.2
3.3
3.4
3.5
3.6
3.6.1
3.7
3.71
3.7.2
3.8
3.9

4
41
4.2
4.3

5
5.1
5.1.1

TableofContents
Listof Figures
Listof Tables
Preface

Introduction
Introduction to the Device Driver

Introduction to TAPI V3.x
Device Driver Interfaces

Device Driver Porting
VINETIC® ACCESS . . o veo et e e
VINETIC® Parallel Access
VINETIC® SPIACCESS ... ovoeeeeeeeeee ..
Compilation
Linux®

Device Driver Integration

Interface Files

DataTypes ...

Relevant VINETIC® Driver Interfaces for Integration
Device Nodes
VINETIC® Basic Device Initialization

VINETIC® Device Reset

VINETIC® Driver Integration Details
Driver Integration - Flow Overview
Driver Integration - Detailed Steps
Advanced Integration Code Example

Device Driver Porting
Clocking Considerations
Reset Considerations

Endianess Considerations

Access Mode Considerations
Interrupt Considerations
SLIC Considerations
CRAM Coefficients
Multiple VINETIC® Chip Support
Shared Interrupt Concept
Shared ResetlLine
Other System Considerations
VINETIC® Driver System Configuration File

Description of the Device Driver Interfaces
Device Initialization
Miscellaneus Interfaces
General-Purpose 1I0s

Device Driver Interfaces Reference
joctlInterfaces
BasiclInterface

Preliminary User’'s Manual
Programmer’s Reference

Table of Contents

Revision 1.2, 2006-09-01

.. VINETIC®-CPE
@l n@ Chip Set Family

CONFIDENTIAL Table of Contents
51.2 Driver Initialization Interface 31
51.3 GPIO INterface e 34
5.2 Driver Function Interfaces e 36
5.3 Type Definition Reference 37
5.3.1 Basic Type Definitions 37
53.2 IO-control Reference 43
5.3.3 Constant Reference 43
534 Structure Reference e 44
535 Enumerator Reference 48
5.3.6 Function Reference 56

ReferenCes 61

Terminology e 62
Preliminary User’'s Manual 5 Revision 1.2, 2006-09-01

Programmer’s Reference

.. VINETIC®-CPE
@l n@ Chip Set Family

CONFIDENTIAL List of Figures

List of Figures

Figure 1 TAPIV3.X Architecture 10
Figure 2 VINETIC® Driver Integration FIOW.ttt e e e e e e e 17
Figure 3 VINETIC® Reset Operation Software FIOW.t 22
Preliminary User’'s Manual 6 Revision 1.2, 2006-09-01

Programmer’s Reference

.. VINETIC®-CPE
@l n@ Chip Set Family

CONFIDENTIAL List of Tables
List of Tables

Table 1 Linux® Compiler FIagsot e e e e 12
Table 2 VXWOrks® Compiler FIAQsottt e e e e 14
Table 3 Files to be included by the application software 15
Table 4 System optional Macros 26
Table 5 Device Driver Interface Overview 30
Table 6 IO-control Overview of Basic Interface 30
Table 7 I0-control Overview of Driver Initialization Interface 31
Table 8 Structure Reference of Driver Initialization Interface 32
Table 9 Enumerator Overview of Driver Initialization Interface 32
Table 10 IO-control Overview of GPIO Interface 34
Table 11 Structure Overview of GPIO Interface 34
Table 12 Function Overview of Driver Kernel Interface 37
Table 13 Enumerator Overview of Driver Kernel Interface 37
Table 14 I0-control Overview of Device Driver Interfaces 43
Table 15 Constant Overview of Device Driver Interfaces 43
Table 16 Constant Reference for Device Driver Interfaces 44
Table 17 Structure Overview of Device Driver Interfaces 44
Table 18 Enumerator Overview of Non TAPIl Interfaces 48
Table 19 Function Overview of Non TAPI Interfaces 56
Preliminary User’'s Manual 7 Revision 1.2, 2006-09-01

Programmer’s Reference

. VINETIC®-CPE
@l n@ Chip Set Family

CONFIDENTIAL Preface

Preface

This document describes the VINETIC®-CPE device driver structure and usage. If not otherwise specified, the
description in this document applies to both two-channel and one-channel Version 2.2 devices of the
VINETIC®-CPE family.

To simplify matters, the following synonyms are used:

VINETIC®-CPE: Synonym used for the system consisting of VINETIC®-CPE codec together with SLIC-DC Version
1.2 or SLIC-E Version 2.2

VINETIC® driver: Synonym used for VINETIC®-CPE device driver.

Attention: TSLIC-E (PEF 4365) is a dual channel version of the SLIC-E (PEF 4265) with identical technical
specifications for each channel. Therefore whenever SLIC-E is mentioned in the specification,
TSLIC-E can also be deployed.

Organization of this Document
This document is organized as follows:

Chapter 1 provides an overview of the VINETIC®-CPE device driver. It gives all information needed to compile the
device driver, and it explains the configuration options.

Chapter 2 gives indications on how to integrate the device driver in the target system.

Chapter 3 guidelines for porting the device driver to different operating systems and hardware platforms.
Chapter 4 description of VINETIC®-CPE device driver interfaces.

Chapter 5 is the reference for the VINETIC®-CPE device driver interfaces.

Remarks

The present document includes guidelines for porting and integration of the VINETIC®-CPE device driver in
Chapter 2 and Chapter 3. The document VINETIC®-CPE device driver Porting and Integration Guide [12] has to
be considered obsolete.

Preliminary User’'s Manual 8 Revision 1.2, 2006-09-01
Programmer’s Reference

. VINETIC®-CPE
@l n@ Chip Set Family

CONFIDENTIAL Introduction

1 Introduction

This chapter gives an introduction to the device driver and how to compile it.

11 Introduction to the Device Driver

The VINETIC®-CPE device driver is a software module allowing the control of VINETIC®-CPE devices using the
Infineon TAPI V3.X: the device driver binary includes the VINETIC®-CPE implementation of the TAPI Low Level
layer. See Chapter 1.1.1 for more details and the document [5] for a description of TAPI interfaces.

In addition to the TAPI support, the VINETIC®-CPE device driver provides some interfaces for device’s control.
See Chapter 1.1.2 for more details.

1.1.1 Introduction to TAPI V3.x

With the introduction of version 3.0, TAPI is able to support the VolP function of multiple Infineon devices/families,
including the latest IP-Phone device, VolP processor and residential gateway SoC.

Infineon TAPI is implemented in two layers: TAPI High Level (HL), abstracting the features up to a none device
specific level, and TAPI Low Level (LL) implementing the device specific part (for example HW/FW access).

TAPI is able of supporting multiple Infineon devices belonging to different families. The most noticeable
architectural change in the TAPI V3.x is delivering TAPI HL as a separate driver, the TAPI LL is implemented in a
separate binary per supported device.

Both control and data paths use TAPI interfaces. Figure 1 provides an overview of the TAPI architecture, in the
particular configuration two different Infineon devices are controlled by TAPI"). As shown in the figure, three device
drivers must be loaded. To be noted that some Infineon device drivers include device specific commands (such
as device initialization) that, although not part of TAPI?, are passed through the TAPI OS interface. A classification
of TAPI and non-TAPI commands is done by the ioctl dispatcher (see Figure 1).

1) TAPI controls the telephony features of the Infineon device.
2) The device specific interfaces are documented in the next chapters.

Preliminary User’'s Manual 9 Revision 1.2, 2006-09-01
Programmer’s Reference

. VINETIC®-CPE
@l neo/n Chip Set Family

CONFIDENTIAL Introduction
Application
Software
/) .
device driver
interface
\J
oS iff T_AP|
Driver

ioctl dispatcher ‘

:

TAPI
High Level

Mapping to Event
TAPILow Level Dispatcher

Y

VoI SUbSYSM \olp Subsystem VINETIC VINETIC Sriver
\VEr SpEeCiic || tAp| Low Level TAPILow Level _specilic
interfaces interfaces
HW Access & Interrupt ‘ HW Access & Interrupt ‘
VolP Subsystem VINETIC
Driver Driver TAP VN adtitecture

Figure 1 TAPI V3.x Architecture

1.1.2 Device Driver Interfaces

The low level device driver might contain (non-TAPI) device specific interfaces. This set of ioctls can be used via
the same tapi file descriptors as the standard TAPI ioctls. The ioctls are transparently forwarded to the
corresponding low level device driver as shown in Fig 1. For a definition of these ioctls a low level _io.h file has to
be included by the application.

As shown in Figure 1, the VINETIC specific interfaces are implemented in the VINETIC®-CPE device driver and
the OS interfaces are registered by the TAPI driver. The advantage of this approach is that the application software
communicates only to one driver (the TAPI driver).

113 Device Driver Porting

With introductiion of VINETIC® device driver 1.0.x, the system- and board-specific code has been isolated to allow
an easy integration and upgrade of the VINETIC® device drivers in customer systems.

While operating system specific adaptions are still part of the device driver allocated in few files the board specific
adaptations like controlling the reset pin etc must be implemented in the BSP or in a "board"-driver.

Chapter 2 and Chapter 3 provide the details.

1.2 VINETIC® Access

Reflecting the different access modes the VINETIC®-CPE family is supporting, the VINETIC®-CPE device driver
offers a set of configure options to select the bus access mode of the specific system at compile time.

The following bus access modes are supported:

+ Parallel interface (8 bit Motorola / Intel mux / Intel demux): direct access (= => access provided by VINETIC®
driver)

Preliminary User’'s Manual 10 Revision 1.2, 2006-09-01
Programmer’s Reference

. VINETIC®-CPE
@l neo/n Chip Set Family

CONFIDENTIAL Introduction

» Serial (SPI): Access via additional SPI device-driver module (not provided by Infineon)

These interfaces are implemented in the files drv_vinetic_access.h/c and assure the sequential read/write of
packet and command data to and from the VINETIC® device.

1.2.1 VINETIC® Parallel Access

The support of the parallel access does not require any user-specific adaptation. The macros are properly set at
compile time and enable access to memory-mapped registers and mailboxes. The required compiler options for
VxWorks® are listed in Table 1. The required configure options for Linux® are listed in Table 2.

In [1] a complete list of corresponding configure options can be found.

1.2.2 VINETIC® SPI Access

As for the parallel access, the support of SPI interface is enabled with the compiler switch -
DVIN_ACC_MODE=SPI or the corresponding configure option --with-access-mode=SPI.

When compiled this way, the VINETIC® driver provides generic SPI low-level routines (drv_vinetic_access.c/h)
and expects some macros to be set in the user configuration header file (see Chapter 3.9). These macros are:

+ SPI_MAXBYTES_SIZE, which indicates how many bytes can be read or written in one go via the SPI interface

* SPI_CS_SET (devnr, high_low), which sets the device SPI chip select to low or to high

» Spi_ll_read_write (txptr, txsize, rxptr, rxsize), which is mapped to the exported system low-level SPI read/write
routine

Once these adaptations are done, the VINETIC® SPI access will work correctly and completely with the VINETIC®
driver.

Attention: The VINETIC®-CPE Version 2.2 chip set makes it possible to configure SPI addresses via pin
strapping. This address has to be passed to the VINETIC® driver with the
FIO_VINETIC_BASICDEV _INIT ioctl as the base address. When only one device is attached to
the SPI bus and pin strapping is not used, the base address must be set to 0x1F.

Attention: The VINETIC®-CPE Version 2.2 chip set uses SPI mode 3. Please refer to [1] for SPI mode
details.

1.3 Compilation

This chapter describes how to compile the TAPI device driver for Linux® (kernel 2.4) and VxWorks® (version 5.4).
For Linux®, the GNU toolchain (autoconf, automake) is used. For VxWorks®, the Tornado project files are required.

To retrieve the device driver sources and to obtain the execution rights and directory structure, the following
command has to be used. It will extract all sources into a subdirectory.

tar xvzf drv_vinetic-1.2.x.X.tar.gz
In case of the new Linux® native self extractor:
s./drv_vinetic-1.2.x.x.sh

read and confirm the license agreement by typing "yes".

1.3.1 Linux®

Building the device driver is done in two steps:

* Go to the directory where you extracted the sources and type in . /configure with the options described in
Table 1 and then

« Execute make or make install

Prerequisite are: the toolchain is in place, the path to the cross-compiler is included in the PATH and the availability

of path to the Linux® kernel header files (using compiler switch --enable-kernelincl=<include path>).

Preliminary User’s Manual 11 Revision 1.2, 2006-09-01
Programmer’s Reference

VINETIC®-CPE
Chip Set Family

CONFIDENTIAL

Introduction

Table 1 Linux® Compiler Flags
Option Description Required
--enable-debug Enable/disable debug messages. Optional
--disable-debug
--enable-kernelincl Set the Linux® kernel include path. Always
--enable-It Enable/disable TAPI line testing services Optional
--disable-It
--enable-voice Enable/disable TAPI Voice support.” Optional
--disable-voice
--enable-dtmf Enable/disable TAPI DTMF detection support.” Optional
--disable-dtmf
--enable-cid Enable/disable TAPI Caller ID support.” Optional
--disable-cid
--enable-fax Enable/disable TAPI T.38 Fax support.” Optional
--disable-fax
--enable-udp-redirect Enable QoS - quality of service and UDP redirection. Optional
--enable-trace Enable runtime traces. Optional
--with-access-mode=<value> Value is the desired uC access mode for your system, |Always
which should be one of the following constants:
INTEL_MUX, INTEL_DEMUX , MOTOROLA, and SPI.
--with-access-width=<value> Value is the desired uC access width the device driver | Optional
does. It should be either 16 (default) or 8.
From the device driver’s view, all accesses to the
VINETIC® are 16-bit (register size). The VINETIC®-CPE
provides only a 8-bit bus interface, which still leaves two
choices despite the access mode:
+ The VINETIC®-CPE driver still does 16-bit accesses
and the bus controller split each access in two 8-bit
accesses (assuring the correct timing) or
» If the bus controller cannot be configured to split 16-
bit accesses as described above, the VINETIC®-CPE
driver to do only 8-bit accesses.
In either case, the device driver will do the accesses in
accordance to controller’'s endianess. Refer to option --
enable-byte-swap if your controller’'s endianess does not
match the bus endianess.
The SPI interface is specified for 8-bit accesses only.
--enable-byte-swap This is a special option for the VINETIC®-CPE device Optional
driver to enable byte swapping inside the VINETIC®-CPE.
This option is intended to support little-endian bus
accesses (such as Intel) in combination with big-endian
controllers and vice versa.
Example: MIPS controller in big-endian mode and the bus
controller performs little-endian bus accesses. In this
case, byte swapping is required and can be done very
efficiently by the VINETIC®-CPE device. This eliminates
the need for modifying the device driver code.
Preliminary User’'s Manual 12 Revision 1.2, 2006-09-01

Programmer’s Reference

infine VINETIC®-CPE

on Chip Set Family
/

CONFIDENTIAL Introduction
Table 1 Linux® Compiler Flags (cont'd)
Option Description Required
--with-max-devices=val Maximum VINETIC devices to support (default = 1) Optional
--enable-polling Enable polling support. Optional

Important - the corresponding low level device drivers

have to be compiled with --enable-polling as well.

1) Per default voice, dtmf, cid and fax are enabled. This will change in a next TAPI version.

1.3.1.1 Loading of the TAPI Modules and Registration

TAPI driver and low-level device drivers (including TAPI LL) are defined to be implemented as kernel modules,
which can be inserted or removed from the kernel dynamically. The device drivers must be loaded after the High
Level TAPI is loaded.

On insmod the version information of the Device driver is displayed on the console.

If CONFIG_DEVFS_FS is supported, device nodes are created by the High Level TAPI on insmod of the low-level
driver. The template is /dev/<devName>/<deviceNumber><channelNumber>

Example - Registration

/* TAPI Module is built as “drv_tapi” */
insmod drv_tapi

/* Now load TAPI LL part with default parameters: */

/* Use default major number and device node name */

/* drv_vinetic i1s the TAPI LL for the VoIP subsystem */
insmod drv_vinetic

/* As an alternative, TAPI LL is loaded using customer parameters */
/* major = device driver major number */

/* devName = device node name to be used */

insmod drv_vinetic major=244 devName=vinetic

1.3.1.2 Support of proc File System

If CONFIG_PROC_FS is supported, the proc file system reports the list of successfully registered low-level device
drivers and version of the TAPI.

Example - Proc File System

/* Retrieves the registered low level drivers, example */
cat /proc/driver/tapi/registered_drivers

Driver version major devices devname

VINETIC 1.2.x.x 230 1 /dev/vinetic

/* Retrieves the version information of High Level TAPI, example */

cat /proc/driver/tapi/version

TAPI Driver, Version 3.2.0.1

Compiled on Feb 20 2006, 16:58:09 for Linux kernel 2.4.31-tgm-dpram-ralph

Preliminary User’s Manual 13 Revision 1.2, 2006-09-01
Programmer’s Reference

VINETIC®-CPE

Chip Set Family

CONFIDENTIAL

1.3.2 VxWorks®

Introduction

It is expected that user has knowledge about Tornado (compiling, configuring, using targed server, tftp, etc.) and
that VxWorks® sources are available.

Building image:

Add drv_vinetic.wpj and drv_tapi.wpj to the workspace and build.

Call the two exported functions from the BSP in order to initialize and link the two resulting .a files to the kernel
image: TAPI_DeviceDriverlnit() and VINETIC_DeviceDriverlnit().

Table 2 VxWorks® Compiler Flags'?
Flag Description Required
-DVIN_2CPE Enable VINETIC®-CPE support.?) Always
-DTAPI Enable TAPI Interface. Always
-DTAPI_DTMF Enable/disable TAPI DTMF detection support. Optional
Disabled by default.
-DTAPI_CID Enable/disable TAPI Caller ID support. Optional
Disabled by default.
-DTAPI_VOICE Enable/disable TAPI voice support. Optional
Disabled by default.
-DTAPI_FAX T38 Enable/disable TAPI T.38 Fax support. Optional
Disabled by default.
-DTAPL_LT Enable/disable TAPI line testing services. Optional
Disabled by default.
-DTAPI_GR909 Enable TAPI GR909 tests. Optional
Disabled by default.
-DVIN_ACCESS_MODE=1 Define the access mode:® Always
* 1-VIN_ACCESS_MODE_MOTOROLA
+ 2-VIN_ACCESS_MODE_INTEL_MUX
*+ 3-VIN_ACCESS_ MODE_INTEL_DEMUX
* 4-VIN_ACCESS_MODE_SPI
-DVIN_ACCESS_WIDTH=16 |Defines 8 or 16-bit access.® Always
-DDEBUG Enable debug messages. Optional
-DENABLE_TRACE Enable trace outputs in general. Optional
-DRUNTIME_TRACE Enable runtime traces. Optional
-DENABLE_LOG Enable log (errors) outputs in general. Optional
-DTAPI_POLL Enable polling support. Optional
Important - the corresponding low level device drivers have
to be compiled with -DTAPI_POLL as well.
1) Here only flags for compiling the driver are described, not VxWorks® related flags.
2) Ifflag is not present then feature is disabled.
3) Used only for drv_vinetic project
Preliminary User’'s Manual 14 Revision 1.2, 2006-09-01

Programmer’s Reference

. VINETIC®-CPE
@l n@ Chip Set Family

CONFIDENTIAL Device Driver Integration

2 Device Driver Integration

This chapter addresses the issues which must be considered when integrating the VINETIC®-CPE device driver
on a specific system.

2.1 Interface Files

This chapter lists the files of the VINETIC®-CPE device driver that is necessary to include in the application
software.

Table 3 Files to be included by the application software
Filename Description

vinetic_io.h VINETIC®-specific ioctl interface
drv_tapi_io.h TAPI ioctl interface

2.2 Data Types

Original data types are used for operating system-specific functions and variables within the operating system
adaptation files <drv_vinetic_<os>.c>. In any other VINETIC® driver source file, only IFX types are used as
defined in Chapter 5.3.1. It helps portability across different operating systems.

Note: These types are defined in the header file <ifx_types.h> that is part of the released source code.

2.3 Relevant VINETIC® Driver Interfaces for Integration

The following chapters describe the relevant interfaces used for the integration of the VINETIC® driver in a system
with respect to the hardware considerations listed in Chapter 3.

For a reference of all device driver interfaces please see Chapter 4 and Chapter 5.

2.3.1 Device Nodes

The system uses device nodes to access the VINETIC®-CPE from the application. Different device nodes are
defined to access either the device or a specific channel.

2.3.1.1 Linux®

If the Linux® kernel includes support for the device file system, device nodes are created by the TAPI subsystem
(for the low level device driver) on insmod. Otherwise, the device nodes must be created manually using the
mknod command. For example, with VINETIC®-CPE:

mknod /dev/vinl0 c¢ 230 10
mknod /dev/vinll c 230 11
mknod /dev/vinl2 c 230 12
mknod /dev/vinl3 c 230 13

mknod /dev/vinl4d c 230 14

In this example, the “major” number 230 was chosen for the VINETIC® device, while the “minor” number is used
to identify the different channels.

Attention: Currently VINETIC®-CPE device driver uses the same device nodes and major number as the

VINETIC® family device driver. The default major number is set to 230, it can be changed
dynamically during insmod with "insmod drv_vinetic major=<MajorNumber>".

Preliminary User’s Manual 15 Revision 1.2, 2006-09-01
Programmer’s Reference

. VINETIC®-CPE
@l n@ Chip Set Family

CONFIDENTIAL Device Driver Integration

2.3.1.2 VxWorks®

In case of VxWorks® the device nodes are created automatically (with the same names as used for Linux®) - no
manual steps required.

2.3.2 VINETIC® Basic Device Initialization

The first step to be done by the VINETIC® driver is an initialisation on each device. This has to be initiated by the
application software. For this purpose, the VINETIC® driver has a dedicated interface called
FIO_VINETIC_BASICDEV_INIT which expects the following parameters:

1. The VINETIC® device physical base address, which is known by the system. This is applicable both for parallel
and SPI access (see Chapter 2.3),

2. The VINETIC® device irq line number known by the system. If the parameter is negative, polling mode is
assumed.

Attention: The access mode is set at compile time with the compiler switch -
DVIN_ACCESS_MODE=<access_mode> or the corresponding configure option --with-access-
mode=<access_mode>. Please take care that the selected access mode matches the access
mode used on your system. Ask your hardware designer if you are unsure.

During the basic device initialization, the following actions take place:

1. Device Base address pointer is set for the access (Parallel and SPI access modes).
2. When in interrupt mode, the interrupt routine is registered by the operating system.

After a successful basic initialization, the next step must be the TAPI initialization.

2.3.3 VINETIC® Device Reset

When the application decides to reset the device (see Chapter 3.2), the VINETIC® driver must be involved
because the device context data inside the VINETIC® driver must also be reset. This operation is done via the
command FIO_VINETIC_DEV_RESET.

Note: If a basic device initialization (see Chapter 2.3.2) has been performed before, it is not required to call
FIO_VINETIC_BASICDEV_INIT because these basic settings are not reset.

Example

The following example resets the VINETIC® device number 0. Every function prefixed with <system_> must be
provided by the system interface. It is assumed that the file descriptor of this VINETIC® device is available in the
example.

/* activate reset of vinetic device 0 */

ret = system_activate_reset (0);
/* deactivate reset of vinetic device 0 */
if (ret == IFX_SUCCESS)
ret = system_deactivate_reset (0);
/* reset internal device data in VINETIC® driver */
if (ret == IFX_SUCCESS)

ret = ioctl (fdvinDev [0], FIO_VINETIC DEV_RESET, 0);

24 VINETIC® Driver Integration Details

The VINETIC® driver controls the communication with the VINETIC® chip and does not take care of any hardware
or system configuration.

Therefore, all system- or platform-relevant initialization and control tasks have to take place in separate software
modules that must be implemented when integrating the VINETIC® driver. This makes the VINETIC® driver
platform-independent and reduces the porting issues on all platforms.

Preliminary User’s Manual 16 Revision 1.2, 2006-09-01
Programmer’s Reference

.. VINETIC®-CPE
Infi n@ Chip Set Family

CONFIDENTIAL Device Driver Integration

The following sections describe the steps required for the complete integration of the VINETIC® driver on a new
system.

241 Driver Integration - Flow Overview

The initialization of the system (access mode, clock rate, interrupt line, chip select) must take place at the system
level before the VINETIC® driver is integrated. The VINETIC® driver is initialized in two steps, basic device
initialization and TAPI initialization. Figure 2 shows the complete integration flow:

For the reset flow please refer to Figure 3.

Before starting, make sure that the

@ power and the generated clocks are
conform to the values indicated in

A4

Initialize System o
(Board, Platform) This is done at system level and

comprises:

- access mode settings

- chip select settings

\ For each device on system ‘ - interruptline configuration

v \-/‘\

Activate resetline for this
VINETIC device
' . .
Initialize this VINETIC Vinetic For each device, following system
device using parameters are needed:
FIO_VINETIC_BASICDEV_INIT - device access mode
- device physical base address
y - device irq line number
Deactivate resetline for this
VINETIC device
Y
|__End For each device on system | From here on, the vinetic driver is
Vinetic chip Initialization Aoplication initiali VINETIC chi
(FW, CRAM, ...), ie via Tapi .ppTlcaT:IIOI’.ltInltla izes chip
Initialization %
A4
End From here on, the vinetic chip is

operational

Vinetic_driver_integration_flow

Figure 2 VINETIC® Driver Integration Flow

24.2 Driver Integration - Detailed Steps

This support can be provided in the form of a system driver (commonly called board driver) or in the form of a
BSP". The following steps from 0 to 7 lead to a successful integration of the VINETIC® driver on a system.

1) BSP =Board Support Package. This support can be provided as an example by or integrated to the operating system used.

Preliminary User’s Manual 17 Revision 1.2, 2006-09-01
Programmer’s Reference

. VINETIC®-CPE
@l n@ Chip Set Family

CONFIDENTIAL Device Driver Integration

Attention: In the description below, functions or macros prefixed with <system> or <SYSTEM> represent
a pseudocode example of functionalities required by the system software. This does not mean
that all macros/functions implemented by the system software must be prefixed as stated
above. It is only important that the functionality behind the pseudocode is granted.

24.21 Step 0
Before setting up the VINETIC® driver, it must be verified that:

+ The VINETIC® device is powered appropriately.
* The clocks are set properly (see Chapter 3.1).

Please refer to [1] for details.

2422 Step1

Compile the VINETIC® driver with the appropriate access mode as specified in Chapter 2.3.

2423 Step2

Initialize the system depending on the VINETIC® chip used by setting the access mode (see Chapter 3.4), the
chip selects, the clock rate (see Chapter 3.1), and the interrupt lines (see Chapter 3.5).

Pseudo Code Example
ret = system_init (SYSTEM_ACCESS_MODE, SYSTEM_2048KHZ_CLOCKRATE) ;
Note: This is an example. May be implemented differently in user’s system software.

2424 Step3
Activate the reset line for each VINETIC® device (see Chapter 3.2).

Pseudo Code Example
ret = system_activate_reset (SYSTEM_VINETIC_DEVICE_ONE) ;
Note: This is an example. May be implemented differently in user’s system software.

2425 Step4d
Do basic device driver initialization of each VINETIC® device (see Chapter 2.3.2).

Attention: It is assumed that the VINETIC® driver is already installed and that all VINETIC® devices file
descriptors are available.

Example
VINETIC_ BasicDeviceInit_t devInit;

memset (&devInit, 0, sizeof (devInit));

/* set access mode according to VIN_ACCESS enumeration */
devInit.nBaseAddress = 0xC0010000;

devInit.nIrgNum = 12;

ret = ioctl (fdvinDev, FIO_VINETIC_BASICDEV_INIT, &devInit);

Note: This implementation can be used as generic code to basically initialize each VINETIC® device. Values are
examples.

Preliminary User’s Manual 18 Revision 1.2, 2006-09-01
Programmer’s Reference

.. VINETIC®-CPE
Infi n@ Chip Set Family

CONFIDENTIAL Device Driver Integration

2426 Step5

Deactivate the reset line for the initialized VINETIC® device (see Chapter 3.2).

Pseudo Code Example
ret = system_deactivate_reset (SYSTEM_VINETIC_DEVICE_ONE) ;
Note: This is an example. May be implemented differently in user’s system software.

2427 Step6
Read the version of the VINETIC® device as a first access test.

Generic Code Example

VINETIC_IO_VERSION devVers;

memset (&devVers, 0, sizeof (devVers)) ;
ret = ioctl (fdvinDev, FIO_VINETIC_ VERS, &devVers) ;
if (ret == IFX_SUCCESS)
printf ("VINETIC [version 0x%2X, type 0x%2X, channels %d] ready!\n\r",
devVers.nChip, devVers.nType, devVers.nChannel) ;

Note: This implementation can be used as generic code to read the version of each VINETIC® device.

2428 Step7

Execute TAPI initialization (Firmware download/activation, CRAM download etc....) and feed the analog channels
lines for each channel on the VINETIC® device.

Example
VINETIC_TIO_INIT vinit;
IFX_TAPI_CH_INIT_t Init;
IFX_uint8_t i = 0;

/* get pointers to firmware / coefficients
(either read from file or compiled in from header file) */

vinit.pPRAMfw = pPram;
vinit.pram_size = <size_bytes>;
vinit.pDRAMfw = pDram;
vinit.dram_size = <size_bytes>;
vinit.pBBDbuf = p_bbd;
vinit.bbd_size = <size_bytes>;

/* Set tapi init structure */

memset (&Init, 0, sizeof (IFX_TAPI_CH_INIT_t));
Init.nMode = IFX_TAPI_INIT_ MODE_VOICE_CODER;
Init.pProc = (IFX_void_t*) &vin_proc;

/* Initialize all tapi channels */
for (i = 0; i <= MAX_SYS_CH_RES; i++)
{
/* Initialize all system channels */
if (0 != ioctl(fdbDevCh[i], IFX_TAPI_CH_INIT, (IFX_int32_t) &Init))

Preliminary User’s Manual 19 Revision 1.2, 2006-09-01
Programmer’s Reference

.. VINETIC®-CPE
Infi n@ Chip Set Family

CONFIDENTIAL Device Driver Integration

break;

/* Set appropriate feeding on all (analog) line channels */

if (i < MAX_ SYS LINE_CH)

{
/* Set line in standby */
if (IFX_SUCCESS != ioctl (fdDevCh[i], IFX_TAPI_LINE_FEED_SET,
IFX_TAPI_LINE_FEED_STANDRBY))

break;

2429 Step 8

Driver interface is operational with VINETIC® using appropriate functions (read/write, TAPI ioctls).

243 Advanced Integration Code Example

The following example is a copy/paste integration code supposed to work on your platform with only small
modifications. It is a pseudo application code to bring up the VINETIC® driver in your system. It is assumed that
all VINETIC® devices file descriptors are available in the example.

Attention: Infineon Technologies can not guarantee that this code will work, as it is dependent on the
system. The order of the calls must not be changed.

Example

IFX_int32_t ret, nDevNum, nAccessMode, 1i;
VINETIC_ BasicDeviceInit_t devInit;
VINETIC_IO_VERSION devVers;

memset (&devInit, 0, sizeof(devInit));
memset (&devVers, 0, sizeof (devVers)) ;
/* initialize the system and get back number of vinetic devices.
During this initialization, following will be initialized:
- access mode
- clock rate
- chip select(s)
- interrupt line

*/
ret = system_init (&nDevNum) ;
if (ret == IFX_ERROR)
{
printf (“system initialization fails\n\r"“);

return ret;

/* in case of successful init, for all devices in the system:
- read basic parameters from system interface
- activate vinetic device reset line
- do vinetic basic device initialization

Preliminary User’s Manual 20 Revision 1.2, 2006-09-01
Programmer’s Reference

VINETIC®-CPE

inﬁn@ Chip Set Family

CONFIDENTIAL Device Driver Integration

- deactivate vinetic device reset
- read vinetic device version

*/

for (i = 0; i < nDevNum; i++)

{

/* get basic parameters: access mode, base address, irg number */

ret = system_get_parameter (i, &(devInit.AccessMode),
& (devInit.nBaseAddress), &(devInit.nIrgNum)) ;

if (ret == IFX_ERROR)

break;
/* activate vinetic device reset line */
ret = system_activate_reset (i);
if (ret == IFX_ERROR)

break;

/* do basic device initialization */
ret = ioctl (fdvinDev[i], FIO_VINETIC_ _BASICDEV_INIT, &devInit);

if (ret == IFX_ERROR)
break;
/* deactivate vinetic device reset line now */
ret = system_deactivate_reset (1);
if (ret == IFX_ERROR)
break;

/* read vinetic device version as test */
ret = ioctl (fdvinDev[i], FIO_VINETIC_VERS, &devVers) ;
if (ret == IFX_ERROR)
break;
/* print out version */
printf ("VINETIC [version 0x%2X, type 0x%2X, channels %d] ready!\n\r",
devVers.nChip, devVers.nType, devVers.nChannel) ;

if (ret == IFX_ERROR)
printf (“please go back to the documentation and double check you didn't miss a
step..."%);

return ret;

Preliminary User’s Manual 21 Revision 1.2, 2006-09-01
Programmer’s Reference

. VINETIC®-CPE
@l n@ Chip Set Family

CONFIDENTIAL Device Driver Porting

3 Device Driver Porting

This chapter addresses hardware-related issues to ensure that the VINETIC® driver runs without problems.

Attention: This is not a hardware integration guide. For VINETIC® chip-related hardware integration,
please refer to the specific hardware documentation (for example [1] and [3]).

3.1 Clocking Considerations

The VINETIC® device needs at least three clocks: master clock (MCLK), frame synchronization (FSC) and PCM

interface clock (PCL). All clocks have to be provided regardless of the application. For details on the clocking

requirements please refer to [1].

Attention: The clock settings must be done properly before using the VINETIC® Driver. Clock problems
affect correct functionality of the VINETIC® chip and VINETIC® driver. Please refer to DEV_ERR
for hardware specific error codes.

3.2 Reset Considerations
For details on the VINETIC®-2CPE/-1CPE reset behaviour please refer to [1].

It is mandatory to respect the reset active time (at least 20 us) and the reset inactive time (at least 2 ms); otherwise
the correct operation of the VINETIC® chip can not be guaranteed. The recommended software flow is depicted
in Figure 3.

Start

h J

Activate Device Reset Pin In case of a shared reset
line, all devices will be reset!

\J

Atleast 20 microseconds
Wait Reset active time
¥/\

Reset activation and
deactivation can be done
in two separated flows.

\J e

Deactivate Device Reset Pin

A J

. . - Atleast 2 milliseconds
Wait Reset inactive time

¥/\
Once this whole reset sequence
h is completed, the VINETIC chip
End can be accessed.

Vinetic_reset_operation

Figure 3 VINETIC® Reset Operation Software Flow

Preliminary User’s Manual 22 Revision 1.2, 2006-09-01
Programmer’s Reference

. VINETIC®-CPE
@l neo/n Chip Set Family

CONFIDENTIAL Device Driver Porting

Note: The VINETIC® driver does not provide a VINETIC® hardware reset functionality. The implementation of this
operation is left to the system integrator.

3.3 Endianess Considerations

The operating system header file which contains the endianess information (little/big endian) must be included in

the file <sys_drv_ifxos.h>. The hardware generic macro _ BYTE _ORDER must be set either to

__LITTLE_ENDIAN or to _ BIG_ENDIAN according to the endianess used (see Chapter 3.1). This setting is

important and required for the handling of 8-bit data, which should be converted to other data types (for example

8-bit to 16-bit, 8-bit to 32-bit).

Attention: It is mandatory to update the file <sys_drv_ifxos.h> in case that the used operating system is
not supported by the driver package.

34 Access Mode Considerations

For programming the VINETIC® and performing data/packet transfer to/from the VINETIC®, either a parallel
interface or a serial microcontroller interface can be used. Additionally, the VINETIC® is equipped with a PCM
interface enabling the establishment of a PCM/TDM voice samples exchange with other devices. For a detailed
VINETIC® interface description please refer to [1].

It is up to the hardware designer either to set the access mode by fixed pin settings of IFSELO and IFSEL1 or to
use a logic device (for example CPLD) between the microcontroller and the VINETIC®.

Note: The VINETIC® driver expects the selected access mode via a dedicated interface for its internal mappings
at initialization time (see Chapter 2.3.2). To support the serial microcontroller interface (SPI), the VINETIC®
driver requires the implementation of specific macros in its user configuration file (see Chapter 3.9).

Attention: Regardless of the PCM Interface being used or not, all clock sources (as described in
Chapter 3.1) must be provided all the time to ensure the correct operation of the VINETIC®
device.

3.5 Interrupt Considerations

The hardware designer connects the VINETIC® interrupt line to the microcontroller used. Therefore, the interrupt
line number used by the microcontroller must be communicated to the VINETIC® driver, so that it can register its
interrupt routine. This is done during the VINETIC® driver initialization time (see Chapter 2.3.2).

The VINETIC® driver assumes that the interrupts are level-triggered. Therefore, it does not provide any
acknowledgement as needed by edge-triggered interrupts.

Attention: It is strongly recommended to use level-triggered interrupt to avoid losing interrupts while the
line is disabled, which often happens with edge-triggered interrupts.

By default, the VINETIC® driver uses the operating system calls for interrupt operations (for example
register/enable/disable/unregister interrupts). Nevertheless, for systems that implement a logic device for interrupt
handling (for example FPGA controlling shared interrupt line), the VINETIC® driver provides a set of macros that
must be adapted for this purpose (see Chapter 3.8 and Chapter 3.9).

3.6 SLIC Considerations
This chapter addresses (software) considerations dependent on the SLIC" type used.

1) SLIC = Subscriber Line Interface Circuit

Preliminary User’s Manual 23 Revision 1.2, 2006-09-01
Programmer’s Reference

. VINETIC®-CPE
@l n@ Chip Set Family

CONFIDENTIAL Device Driver Porting

3.6.1 CRAM Coefficients
CRAM coefficients are SLIC-dependent. They must be calculated using the VINETICOS software and are part of
the overall download image in BBD" format .

These coefficients can be downloaded device-wise (broadcast) to the VINETIC® during the VINETIC® TAPI
initialization, or channel-wise with the interface FIO_VINETIC_BBD_DOWNLOAD.

Downloading CRAM coefficients is done in the user application. The VINETIC® driver does not automatically
download any default CRAM coefficients.

Note: Please take care of selecting the appropriate coefficients for your application.

Example

bbd_format_t bbd_download;
IFX_int32_t ret;

memset (&bbd_download, 0, sizeof (bbd_download)) ;

/* £ill download structure whith appropriate pointer and size */
bbd_download.buf = bbd_file_ptr;

bbd_download.size = bbd_file_size; /* in bytes */

/* download on channel of given fd */

ret = ioctl (fdvinChan, FIO_VINETIC_BBD_ DOWNLOAD, (int) &bbd_download) ;

3.7 Multiple VINETIC® Chip Support

The VINETIC® driver is designed to support several VINETIC® devices on a single board. Therefore, the VINETIC®
device number must be provided using the compiler macro VINETIC_MAX_DEVICES:

-DVINETIC_MAX_DEVICES=<gsystem device number>.
The value is set by default to 1. See also Table 1 and Table 2.

If the VINETIC® driver must support more than one VINETIC® device, shared interrupts and reset lines come into

consideration. These topics are discussed in the following chapters.

Attention: Itis mandatory to specify how many VINETIC® devices are on the system being integrated when
compiling the VINETIC® driver for that system. Otherwise, the VINETIC® driver assumes that the
system has only one VINETIC® device and also supports only one device.

3.71 Shared Interrupt Concept

If several VINETIC® devices are connected to only one microcontroller interrupt line, the VINETIC® driver provides
shared interrupt support for Linux® and VxWorks® operating systems. If instead the shared interrupt line is
controlled by a logic device (for example FPGA device), the VINETIC® driver provides a set of macros that must
be adapted accordingly (see Chapter 3.5 and Chapter 3.9).

Attention: The shared interrupt support implementation must be done for all currently unsupported
operating systems (see Chapter 3.1 for more details).

3.7.2 Shared Reset Line

If the reset line is shared by several VINETIC® devices, all these chips will be reset when the reset pin is activated
and deactivated (see Chapter 3.2). This must be taken into account in the system software design, which must
provide a mechanism to reset each VINETIC® device separately without influence on the other running devices.

1) BBD = Block Based Download

Preliminary User’s Manual 24 Revision 1.2, 2006-09-01
Programmer’s Reference

. VINETIC®-CPE
@l neo/n Chip Set Family

CONFIDENTIAL Device Driver Porting

3.8 Other System Considerations

This chapter includes some VINETIC® driver system considerations which make it necessary to implement a
system abstraction layer in addition to the VINETIC® driver interfaces for the integration that are already provided.
The reason for this is that these system considerations could not be addressed by means of the provided
interfaces.

Considering system differences, a list of several usable (optional) system macros was defined.

The VINETIC® driver uses these macros for special system parameters which can be overruled by a user
configuration file (see Chapter 3.9).

This ensures the flexibility needed by the VINETIC® driver, which has to support several system implementations
without increased complexity.

List of the (optional) system macros (set at compile time):

* VIN_DISABLE_IRQLINE(...)/ VIN_ENABLE_IRQLINE(...)
These macros are intended to map the enable/disable IRQ lines routines for systems not using the operating
system methods for this action (for example FPGA device controls interrupt handling). They are by default
mapped to the appropriate operating system routines.

* VIN_DISABLE_IRQGLOBAL(...)) VIN_ENABLE_IRQGLOBAL(...)
These macros are intended to map the enable/disable global IRQ routines for systems not using the operating
system methods for this action (for example FPGA device controls interrupt handling). They are by default
mapped to the appropriate operating system routines. When used, all interrupt sources are disabled or enabled
on the microcontroller.

* VIN_SYS REGISTER_INT_HANDLER(...)/ VIN_SYS_UNREGISTER_INT_HANDLER(...)
These macros are intended for the registration / deregistration of the interrupt handler when the operating
system routines are not suitable for this purpose (for example user implements his own assembler routines for
theses purposes). They are by default mapped to the operating system routines (see Chapter 3.1).

3.9 VINETIC® Driver System Configuration File

The VINETIC® driver provides a system abstraction layer header file in which several (optional) system-specific
macros can be redefined if needed to ensure full support of the system being integrated (for example: macros
defined in Chapter 3.8).

This file, called <drv_config_user.h>, is system-specific (which means not common) and therefore must be
located in the system build directory.

The VINETIC® driver considers the macros defined in this file only if compiled with the specific compiler switch

"-DENABLE_USER_CONFIG'.

Note: On systems using the configure/automake tools, this macro is set when the argument --enable-user-config
is passed to the configure/automake script.

A template of this file, called <drv_config_user.default.h>, is available with the released source code. This file
contains system macros that can be adapted accordingly. Once adapted, the file must be placed in the target build
directory and renamed to <drv_config_user.h>.

A direct application of this file is the system-dependent SPI support (see Chapter 3.4).

Table 4 shows an overview of system-relevant macros defined in the file. For more details (for example: about
macro parameters), please refer to the commented source file.

Preliminary User’s Manual 25 Revision 1.2, 2006-09-01
Programmer’s Reference

.. VINETIC®-CPE
@l n@ Chip Set Family

CONFIDENTIAL Device Driver Porting

Table 4 System optional Macros

Name Description
Error Setting Macro
SET_ERROR(...) Macro to signal and set an error. Useful to generate a trigger

signal during hardware debugging.

SPI Access Support Macros (usage enabled with -DVIN_SPI)

SPI_MAXBYTES_SIZE SPI buffer size in bytes (8-bit) according to the SPI driver.
SPI_CS_SET(...) Macro to set/unset SPI chip select.
spi_Il_read_write(...) Macro mapping the low-level SPI read/write routine, exported for

example by an SPI driver.

Interrupt Operations Support Macros (in case OS methods are not suitable)

VIN_DISABLE_IRQLINE(...) Macro to disable the interrupt line specified, by default set to OS
method (see Chapter 3.1).

VIN_ENABLE_IRQLINE(...) Macro to enable the interrupt line specified, by default set to OS
method (see Chapter 3.1).

VIN_DISABLE_IRQGLOBAL(...) Macro to disable the global interrupt, by default set to OS method
(see Chapter 3.1), used in polling mode to lock high priority
tasks.

VIN_ENABLE_IRQGLOBAL(...) Macro to enable the global interrupt, by default set to OS method

(see Chapter 3.1), used in polling mode to unlock previously
locked high priority tasks.

VIN_SYS REGISTER_INT_HANDLER(...) Macro that maps the function taking care of the interrupt handler
registration, by default set to OS method implemented in OS file
(see Chapter 3.1).

VIN_SYS_UNREGISTER INT_HANDLER(...) | Macro that maps the function taking care of the interrupt handler
unregistration, by default set to OS method implemented in OS
file (see Chapter 3.1).

Preliminary User’s Manual 26 Revision 1.2, 2006-09-01
Programmer’s Reference

.. VINETIC®-CPE
@l n@ Chip Set Family

CONFIDENTIAL Description of the Device Driver Interfaces

4 Description of the Device Driver Interfaces
This chapter introduces VINETIC®-CPE device driver interfaces.

4.1 Device Initialization

It follows a list of device driver interfaces required for VINETIC®-CPE hardware and device driver initialization.
Usage examples are given in Chapter 2.3.

* FIO_VINETIC_BASICDEV_INIT is required for hardware initialization, see also Chapter 2.3.2.
* FIO_VINETIC_DEV_RESET is required after device reset, see also Chapter 2.3.3.

4.2 Miscellaneus Interfaces
It follows a list of miscellaneous device driver interfaces.

+ FIO_VINETIC_VERS should be used to know the VINETIC®-CPE device version, see also Chapter 2.4.2.7
for an example.

* FIO_VINETIC_LASTERR can be used to know the cause of the error reported by an ioctl, the errors are
defined in enum DEV_ERR.

4.3 General-Purpose I0s

The VINETIC®-CPE device driver's GPIO module allows access to the VINETIC®-CPE GPIO pins", ioctl and
function interfaces are provided. To avoid concurrent access, the GPIO pin needs to be reserved
FIO_VINETIC_GPIO_RESERVE (or VINETIC_GpioReserve) before it can be used. Any subsequent try to
reserve this pin will fail until it is released explicitty by FIO_VINETIC_GPIO_RELEASE (or
VINETIC_GpioRelease).

Any of the GPIO pins can be configured as input or output using FIO_VINETIC_GPIO_CONFIG (or
VINETIC_GpioConfig) and the according value can be set? by FIO_VINETIC_GPIO_SET (or
VINETIC_GpioSet) or read out by FIO_VINETIC_GPIO_GET (or VINETIC_GpioGet).

The GPIO ioctl interface is accessed via the device file descriptor (e.g. /dev/vin10, etc.), the structure
VINETIC_IO_GPIO_CONTROL is used to configure the pins.

In kernel mode, the calling software needs to pass the address of the device (for the GPIOs) structure on
reservation. From this point, the calling party uses the 10 handle for subsequent operations.

In addition to the basic input/output operation, the kernel mode supports using interrupt capabilities of the GP10s
to register a callback function. The function VINETIC_GpiolntMask can be used to enable and disable the
interrupt after registering the callback.

For the function interfaces, structure VINETIC_GPIO_CONFIG is used to configure the pins.

Example ioctl Interfaces
Configure pin 0..3 as input and pin 4..7 as output. Pin 4 and 5 should be switched on, 6 and 7 off.

/* Configure pin 0..3 as input and pin 4..7 as output. */
/* Pin 4 and 5 should be switched on, 6 and 7 off. */
VINETIC_ IO GPIO CONTROL gpio;
IFX_int32_t fd_dev;
IFX_return_t err;

memset (&gpio, 0, sizeof (gpio));

1) Not available in all packages.
2) Only if the GPIO is configured as output.

Preliminary User’s Manual 27 Revision 1.2, 2006-09-01
Programmer’s Reference

.. VINETIC®-CPE
Infi n@ Chip Set Family

CONFIDENTIAL Description of the Device Driver Interfaces

/* open the control file descriptor */
fd_dev = open("/dev/vinl0", O_RDWR) ;

/* Reserve the pins, for exclusive access */

/* Select pins 0..7 --> set to 1’ bits 0..7 */

gpio.nGpio = 0x00FF;

err = ioctl(fd_dev, FIO_VINETIC_GPIO_ RESERVE, (IFX_int32_t) &gpio);
/* now gpio contains the iohandle required for subsequent accesses */

/* Configure pin 0..3 as input, 4..7 as output */

/* nMask: select pins 0..7 --> set to "1’ bits 0..7 */

gpio.nMask = 0x00FF;

/* nGpio: pin 0..3 are input --> set to ’'1l’ bits 0..3 */

/* nGpio: pin 4..7 are output --> set to 0’ bits 4..7 */
gpio.nGpio = 0x00FO0;

err = ioctl(fd_dev, FIO_VINETIC_GPIO_ CONFIG, (IFX_int32_t) &gpio);

/* nGpio: pins 4 and 5 are high : ‘1’ in bit position 4 and 5 */
/* nGpio: pins 6 and 7 are low : ‘0’ in bit position 5 and 7 */
gpio.nGpio = 0x0030;

/* nMask: select pins 4..7 --> set to ’'1l’ bits 4..7 */
gpio.nMask = 0x00FO0;

err = ioctl(fd_dev, FIO_VINETIC_GPIO_SET, (IFX_int32_t) &gpio);

/* read back the status of all the pins (input and output) */
gpio.nMask = 0x00FF;
err = ioctl (fd_dev, FIO_VINETIC_GPIO_ GET, (IFX_int32_t) &gpio);

/* release all GPIO pins */
err = ioctl(fd_dev, FIO_VINETIC_GPIO RELEASE, (IFX_int32_t) &gpio);

Example of Function Interfaces
This example reserves 5 GPIO pins, sets pin 1,2 and 5 to value 1 and gets the value of pin 4.

/* Initializes the corresponding driver instance */
VINETIC_GPIO_CONFIG ioCfg;

IFX_int32_t ctx, i, hd;

IFX_uintl6_t wval;

/* Get the device handle with a open from kernel space. */
/* Device 0 and channel 1*/

ctx = VINETIC_OpenKernel (0, 1);

/* reserve 5 pins and get the handle */
hd = VINETIC GpioReserve (ctx, O0x1F);
ioCfg.nMode = GPIO_MODE_OUTPUT;
ioCfg.nGpio = 0x13;

ioCfg.callback = callback;

/* configure pins 1,2 and 5 as output */
VINETIC_GpioConfig(hd, &ioCfg);
ioCfg.nMode = GPIO_MODE_INPUT;
ioCfg.nGpio = 0x8;

/* configure pin 4 as input */

Preliminary User’'s Manual 28 Revision 1.2, 2006-09-01
Programmer’s Reference

.. VINETIC®-CPE
Infi n@ Chip Set Family

CONFIDENTIAL

Description of the Device Driver Interfaces

VINETIC_GpioConfig(hd, &ioCfg);

/* set the value of pin 4 to 1 */
VINETIC_GpioSet (hd, 0x10, 0x10);

/* set the value of pins 1 and 2 to 1 */
VINETIC_GpioSet (hd, 0x03, 0x03);

/* get the value of pin 4 */

VINETIC GpioGet (hd, &val, 0x08);

/* Release GPIO pin resource, can use also VINETIC_GpioRelease() */
VINETIC_ReleaseKernel (hd) ;

Preliminary User’s Manual 29 Revision 1.2, 2006-09-01
Programmer’s Reference

.. VINETIC®-CPE
@l n@ Chip Set Family

CONFIDENTIAL Device Driver Interfaces Reference

5 Device Driver Interfaces Reference

This section describes device specific interfaces, also called device driver interfaces.

5.1 ioctl Interfaces

This chapter describes all device driver interfaces. The ioctl commands are explained by mentioning the return
values for each function. The organization is as follows:

Table 5 Device Driver Interface Overview

Name Description

Basic Interface Basic Interface

Driver Initialization Driver Initialization Interface

Interface

GPIO Interface ioctl interface for GPIO/IO pin handling.
511 Basic Interface

Basic VINETIC® Access routines as command read and write and initialization.

Table 6 10-control Overview of Basic Interface

Name Description
FIO_VINETIC_VERS Read relevant version information.
FIO_VINETIC_LASTERR Get the last occurred error.

51.11 FIO_VINETIC_VERS

Description

Provide Vinetic driver versions information.

Prototype

IFX_void_t ioctl (
IFX_int32_t fd,
FIO_VINETIC_VERS,
IFX_int32_t param);

Parameters

Data Type Name Description

IFX_int32_t fd File descriptor

IFX_int32_t FIO_VINETIC_VERS I/O control identifier for this operation

IFX_int32_t param The parameter points to a
VINETIC_IO_VERSION structure.

Return Values

Data Type Description
IFX_void_t No return value
Preliminary User’'s Manual 30 Revision 1.2, 2006-09-01

Programmer’s Reference

VINETIC®-CPE
Chip Set Family

CONFIDENTIAL

5.1.1.2

Description
Get the last occurred error.

Prototype

IFX_void_t ioctl (
IFX_int32_t f£fd,

Device Driver Interfaces Reference

FIO_VINETIC_LASTERR

FIO_VINETIC_LASTERR,
IFX_int32_t param);

Parameters

Data Type Name Description

IFX_int32_t fd File descriptor

IFX_int32_t FIO_VINETIC_LASTERR I/O control identifier for this operation
IFX_int32_t param The error codes are enumerated in DEV_ERR.
Return Values

Data Type Description

IFX_void_t No return value

Example

IFX_int32_t fd_dev;
IFX_int32_t lasterr;
IFX_return_t ret;

/* Open control file descriptor */

fd_dev

ret = ioctl (fd_dev,
printf ("Last error

/* Close all open fds
close(fd_dev) ;

5.1.2

open("/dev/vinl0",

O_RDWR, 0x644);
FIO VINETIC_ LASTERR, (IFX_ int32_t) &lasterr);
0x%08x (%d), %d\n", lasterr, lasterr, ret);
*/

Driver Initialization Interface

Interfaces for the driver Initialization.

Table 7

10-control Overview of Driver Initialization Interface

Name

Description

FIO_VINETIC_BASICDEV_INIT

Initialize VINETIC® device driver for the selected device.

FIO_VINETIC_DEV_RESET

Reset VINETIC® Device driver internal structure for the selected device.

Preliminary User’s Manual
Programmer’s Reference

31 Revision 1.2, 2006-09-01

.. VINETIC®-CPE
@l n@ Chip Set Family

CONFIDENTIAL Device Driver Interfaces Reference

Table 8 Structure Reference of Driver Initialization Interface

Name Description

VINETIC_IO_INIT Structure used for device initialization
Table 9 Enumerator Overview of Driver Initialization Interface

Name Description

VIN_ACCESS VINETIC® Access Modes.

5.1.21 FIO_VINETIC_BASICDEV_INIT

Description

As the driver doesn’t support board dependent implementations anymore, this interface is to call at very first to
initialize the VINETIC® driver with the chip parameters passed the pointer to the structure
VINETIC_BasicDevicelnit_t. No chip access will be done until this basic initialization is successful.

Prototype

IFX_void_t ioctl (
IFX_int32_t fd,
FIO_VINETIC_BASICDEV_INIT,
IFX_int32_t param);

Parameters
Data Type Name Description
IFX_int32_t fd File descriptor
IFX_int32_t FIO_VINETIC_BASICDEV _IN |I/O control identifier for this operation
IT
IFX_int32_t param Use structure VINETIC_BasicDevicelnit_t
Return Values
Data Type Description
IFX_void_t No return value

5.1.2.2 FIO_VINETIC_DEV_RESET

Description

Reset VINETIC® Device driver internal structure for the selected device.
Attention: This interface does not issue a device reset!

Prototype

IFX_void_t ioctl (
IFX_int32_t fd,
FIO_VINETIC_DEV_RESET,
IFX_int32_t param);

Preliminary User’'s Manual 32 Revision 1.2, 2006-09-01
Programmer’s Reference

VINETIC®-CPE
Chip Set Family

CONFIDENTIAL

Device Driver Interfaces Reference

Parameters

Data Type Name Description

IFX_int32_t fd File descriptor

IFX_int32_t FIO_VINETIC_DEV_RESET |I/O control identifier for this operation
IFX_int32_t param Parameter not required.

Return Values

Data Type Description

IFX_void_t No return value

Preliminary User’s Manual
Programmer’s Reference

33

Revision 1.2, 2006-09-01

VINETIC®-CPE
Chip Set Family

CONFIDENTIAL

51.3 GPIO Interface
Control the device and channel specific 10 pins.

Table 10 10-control Overview of GPIO Interface

Device Driver Interfaces Reference

Name Description

FIO_VINETIC_GPIO_CONFIG Configure GPIO pins.

FIO_VINETIC_GPIO_GET Get GPIO pin values.

FIO_VINETIC_GPIO_RELEASE |Release GPIO pin.

FIO_VINETIC_GPIO_RESERVE

Reserve GPIO pins for use.

FIO_VINETIC_GPIO_SET Set GPIO pin values.

Table 11 Structure Overview of GPIO Interface

Name Description

VINETIC_GPIO_CONFIG

GPIO Configuration Structure.

VINETIC_IO_GPIO_CONTROL GPIO Control Structure.

5.1.3.1 FIO_VINETIC_GPIO_RESERVE

Description
Reserve GPIO pins.

Prototype

IFX_void_t ioctl (
IFX_int32_t fd,
FIO_VINETIC_GPIO_RESERVE,
IFX_int32_t param);

Parameters
Data Type Name Description
IFX_int32_t fd File descriptor
IFX_int32_t FIO_VINETIC_GPIO_RESER |I/O control identifier for this operation
VE
IFX_int32_t param Use structure VINETIC_IO_GPIO_CONTROL.
Return Values
Data Type Description
IFX_void_t No return value
5.1.3.2 FIO_VINETIC_GPIO_CONFIG

Description
Configure GPIO pins.

Preliminary User’'s Manual 34
Programmer’s Reference

Revision 1.2, 2006-09-01

VINETIC®-CPE
Chip Set Family

CONFIDENTIAL

Prototype

IFX_void_t ioctl (
IFX_int32_t fd,
FIO_VINETIC_GPIO_CONFIG,
IFX_int32_t param);

Device Driver Interfaces Reference

Parameters
Data Type Name Description
IFX_int32_t fd File descriptor
IFX_int32_t FIO_VINETIC_GPIO_CONFI |I/O control identifier for this operation
G
IFX_int32_t param Use structure VINETIC_IO_GPIO_CONTROL.
Return Values
Data Type Description
IFX_void_t No return value
5.1.3.3 FIO_VINETIC_GPIO_SET

Description

Set GPIO pin values.

Prototype

IFX_void_t ioctl (
IFX_int32_t fd,
FIO_VINETIC_GPIO_SET,
IFX_int32_t param);

Parameters

Data Type Name Description

IFX_int32_t fd File descriptor

IFX_int32_t FIO_VINETIC_GPIO_SET I/O control identifier for this operation
IFX_int32_t param Use structure VINETIC_IO_GPIO_CONTROL.
Return Values

Data Type Description

IFX_void_t No return value

5.1.3.4 FIO_VINETIC_GPIO_GET

Description

Get GPIO pin values.

Preliminary User’s Manual
Programmer’

35
s Reference

Revision 1.2, 2006-09-01

VINETIC®-CPE
Chip Set Family

CONFIDENTIAL

Prototype

IFX_void_t ioctl (
IFX_int32_t fd,
FIO_VINETIC_GPIO_GET,
IFX_int32_t param);

Device Driver Interfaces Reference

Parameters

Data Type Name Description

IFX_int32_t fd File descriptor

IFX_int32_t FIO_VINETIC_GPIO_GET I/O control identifier for this operation
IFX_int32_t param Use structure VINETIC_IO_GPIO_CONTROL.
Return Values

Data Type Description

IFX_void_t No return value

5.1.3.5 FIO_VINETIC_GPIO_RELEASE

Description

Release GPIO.

Prototype

IFX_void_t ioctl (
IFX_int32_t fd,
FIO_VINETIC_GPIO_RELEASE,
IFX_int32_t param);

Parameters
Data Type Name Description
IFX_int32_t fd File descriptor
IFX_int32_t FIO_VINETIC_GPIO_RELEA |I/O control identifier for this operation
SE
IFX_int32_t param Use structure VINETIC_IO_GPIO_CONTROL.
Return Values
Data Type Description
IFX_void_t No return value
5.2 Driver Function Interfaces

Device driver function interfaces.

Preliminary User’'s Manual 36
Programmer’s Reference

Revision 1.2, 2006-09-01

VINETIC®-CPE
Chip Set Family

CONFIDENTIAL

Table 12

Device Driver Interfaces Reference

Function Overview of Driver Kernel Interface

Name

Description

VINETIC_OpenKernel

Open the device from Kernel mode.

VINETIC_ReleaseKernel

Release a VINETIC® 10 or GPIO pin resource.

VINETIC_GpioReserve

Reserve a VINETIC® IO or GPIO pin resource.

VINETIC_GpioRelease

Release a VINETIC® 10 or GPIO pin resource.

VINETIC_GpioConfig

Configure a VINETIC® 10 or GPIO pin.

VINETIC_GpioSet

Set the value of a VINETIC® |0 or GPIO pin.

VINETIC_GpioGet

Read the value from a VINETIC® IO or GPIO pin.

VINETIC_GpiolntMask

Set the interrupt enable mask.

Table 13

Enumerator Overview of Driver Kernel Interface

Name

Description

VINETIC_GPIO_MODE

GPIO pin configuration modes.

5.3 Type Definition Reference
This chapter contains the reference of data types and structures of all modules.

5.31 Basic Type Definitions
This section describes the basic type definitions such as:

o IFX_return_t
* IFX_boolean_t

* IFX_uint8_t

+ IFX_int8_t

* IFX_uint32_t
+ IFX_int32_t

o IFX_uint16_t
+ IFX_int16_t

* |FX_char_t

+ IFX_void_t

* IFX_float_t

* IFX_operation_t

5311 IFX_return_t

Description

All the APlIs return a Success or a Failure based on their execution Status. The return code is set to IFX_ERROR
only if an error occurs, otherwise its value is IFX_SUCCESS.

Prototype

typedef enum

{
IFX_ERROR =

} IFX_return_t;

Preliminary User’s Manual
Programmer’s Reference

-1,
IFX_SUCCESS = 0

37 Revision 1.2, 2006-09-01

VINETIC®-CPE
Chip Set Family

CONFIDENTIAL

Device Driver Interfaces Reference

Parameters
Name Value Description
IFX_ERROR -1p Operation failed.
IFX_SUCCESS Op Operation was successful.
5.31.2 IFX_boolean_t
Description
Definition for true and false.
Prototype
typedef enum
{

IFX_FALSE = 0,

IFX_TRUE = 1
} IFX_boolean_t;
Parameters
Name Value Description
IFX_FALSE Op False.
IFX_TRUE 15 True.

53.1.3 IFX_uint8_t

Prototype

typedef unsigned char IFX_uint8_t;

Parameters
Data Type Name Description
unsigned char IFX_uint8_t This is the unsigned char 8-bit datatype.

53.1.4 IFX_int8_t

Prototype

typedef char IFX_int8_t;

Parameters
Data Type Name Description
char IFX_int8 t This is the char 8-bit datatype.

Preliminary User’'s Manual

Programmer’s Refere

nce

38 Revision 1.2, 2006-09-01

.. VINETIC®-CPE
@l n@ Chip Set Family

CONFIDENTIAL Device Driver Interfaces Reference

53.1.5 IFX_uint32_t

Prototype
typedef unsigned int IFX_uint32_t;

Parameters
Data Type Name Description
unsigned int IFX_uint32_t This is the unsigned int 32-bit datatype.

53.1.6 IFX_int32_t

Prototype
typedef int IFX_int32_t;

Parameters
Data Type Name Description
int IFX_int32_t This is the int 32-bit datatype.

53.1.7 IFX_uint16_t

Prototype
typedef unsigned short IFX_ uintlé_t;

Parameters
Data Type Name Description
unsigned short IFX_uint16_t This is the unsigned short int 16-bit datatype.

53.1.8 IFX_int16_t

Prototype
typedef short IFX_intl6_t;

Parameters
Data Type Name Description
short IFX_int16_t This is the short int 16-bit datatype.

5.319 IFX _char_t

Prototype
typedef char IFX_char_t;

Preliminary User’s Manual 39 Revision 1.2, 2006-09-01
Programmer’s Reference

.. VINETIC®-CPE
@l n@ Chip Set Family

CONFIDENTIAL Device Driver Interfaces Reference
Parameters

Data Type Name Description

char IFX_char_t This is the char 8-bit datatype.

5.3.1.10 IFX_void_t

Prototype
typedef void IFX_void_t;

Parameters
Data Type Name Description
void IFX_void_t This is a void datatype.

5.3.1.11 IFX_float_t

Prototype
typedef float IFX_float_t;

Parameters
Data Type Name Description
float IFX float_t This is a float datatype.

5.3.1.12 IFX_operation_t

Description
Definition of enable and disable operation.

Prototype

typedef enum

{
IFX_DISABLE = 0,
IFX_ENABLE = 1

} IFX_operation_t;

Parameters

Name Value Description

IFX_DISABLE 0p Disable.

IFX_ENABLE 1o Enable.

Preliminary User’'s Manual 40 Revision 1.2, 2006-09-01

Programmer’s Reference

.. VINETIC®-CPE
@l n@ Chip Set Family

CONFIDENTIAL Device Driver Interfaces Reference

5.3.1.13 IFX_vuint8_t

Description
This is the volatile unsigned 8-bit datatype.

Prototype
typedef volatile IFX_ uint8_t IFX_wvuint8_t;

Parameters
Data Type Name Description
volatile IFX_uint8_t |IFX_ vuint8_t This is the volatile unsigned 8-bit datatype.

5.3.1.14 IFX_vint8_t

Description
This is the volatile signed 8-bit datatype.

Prototype
typedef volatile IFX_int8_t IFX_vint8_t;

Parameters
Data Type Name Description
volatile IFX_int8 t |IFX _vint8_t This is the volatile signed 8-bit datatype.

5.3.1.15 IFX_vuint16_t

Description
This is the volatile unsigned 16-bit datatype.

Prototype
typedef volatile IFX_ uintlé6_t IFX vuintlé6_t;

Parameters

Data Type Name Description

volatile IFX_vuint16_t This is the volatile unsigned 16-bit datatype.
IFX_uint16_t

5.3.1.16 IFX_vint16_t

Description
This is the volatile signed 16-bit datatype.

Preliminary User’s Manual 41 Revision 1.2, 2006-09-01
Programmer’s Reference

@ neon VINETIC®-CPE
Chip Set Family

/

CONFIDENTIAL Device Driver Interfaces Reference

Prototype
typedef volatile IFX_intlé6_t IFX vintlé_t;

Parameters
Data Type Name Description
volatile IFX_int16_t |IFX_vint16_t This is the volatile signed 16-bit datatype.

5.3.1.17 IFX_vuint32_t

Description
This is the volatile unsigned 32-bit datatype.

Prototype
typedef volatile IFX_ uint32_t IFX vuint32_t;

Parameters

Data Type Name Description

volatile IFX_vuint32_t This is the volatile unsigned 32-bit datatype.
IFX_uint32_t

5.3.1.18 IFX_vint32_t

Description
This is the volatile signed 32-bit datatype.

Prototype
typedef volatile IFX_int32_t IFX_ vint32_t;

Parameters
Data Type Name Description
volatile IFX_int32_t |IFX_vint32_t This is the volatile signed 32-bit datatype.

5.3.1.19 IFX_vfloat_t

Description
This is the volatile float datatype.

Prototype
typedef volatile IFX float_t IFX vfloat_t;

Preliminary User’'s Manual 42 Revision 1.2, 2006-09-01
Programmer’s Reference

VINETIC®-CPE
Chip Set Family

CONFIDENTIAL

Device Driver Interfaces Reference

Parameters

Data Type Name Description
volatile IFX_float_t |IFX vfloat t

This is the volatile float datatype.

5.3.2 10-control Reference
This chapter contains the 10-control reference.

Table 14 10-control Overview of Device Driver Interfaces

Name Description

FIO_VINETIC_DRV_CTRL Driver configuration.

FIO_VINETIC_VERS Read relevant version information.

FIO_VINETIC_LASTERR Get the last occurred error.

FIO_VINETIC_DEV_GPIO_CFG Configure device GPIO pins 0.

FIO_VINETIC_DEV_GPIO_SET Set GPIO pins values.

FIO_VINETIC_GPIO_RESERVE Reserve GPIO pins for use.

FIO_VINETIC_GPIO_CONFIG Configure GPIO pins.

FIO_VINETIC_GPIO_SET

Set GPIO pin values.

FIO_VINETIC_GPIO_GET

Get GPIO pin values.

FIO_VINETIC_GPIO_RELEASE Release GPIO.
FIO_VINETIC_BASICDEV_INIT Initialize VINETIC® Device driver information for the selected
device.

FIO_VINETIC_DEV_RESET

Reset VINETIC® Device driver internal structure for the selected
device.

5.3.3 Constant Reference

This chapter contains the constant reference.

Table 15 Constant Overview of Device Driver Interfaces

Name

Description

MAX_CMD_WORD

Maximal Command/Data Words.

MAX_PACKET_WORD

Maximal Packet Words.

VINETIC_CH_NR

VINETIC® maximum channel number.

VINETIC_ANA_CH_NR

VINETIC® maximum analog channel number.

NO_BCONF Flag for VINETIC_IO_INIT to avoid no board configuration.
NO_EDSP_START Flag for VINETIC_IO_INIT to avoid EDSP start.
NO_FW_DWLD Flag for VINETIC_IO_INIT to avoid firmware download.

VIN_BUF_HDR1_CH

Packet Header Masks for channel number.

VIN_BUF_HDR1_DEV

Packet Header Masks for device number.

VIN_BUF_HDR2_LEN

Packet Header Masks for payload length in words.

VIN_BUF_HDR2_ODD

Packet Header Masks for odd bit (set if the last byte in the last word is
padding).

Preliminary User’s Manual
Programmer’s Reference

43 Revision 1.2, 2006-09-01

@ neon VINETIC®-CPE
Chip Set Family

/

CONFIDENTIAL Device Driver Interfaces Reference

Table 16 Constant Reference for Device Driver Interfaces

Name and Description Value
MAX_CMD_WORD 31p
Maximal Command/Data Words.

MAX_PACKET_WORD 255,
Maximal Packet Words.

VINETIC_CH_NR 8p
VINETIC® maximum channel number.

VINETIC_ANA_CH_NR 4,
VINETIC® maximum analog channel number.

NO_BCONF 14
Flag for VINETIC_IO_INIT to avoid no board configuration.

NO_EDSP_START 24
Flag for VINETIC_IO_INIT to avoid EDSP start.

NO_FW_DWLD 100,
Flag for VINETIC_IO_INIT to avoid firmware download.

VIN_BUF_HDR1_CH 3y
Packet Header Masks for channel number.

VIN_BUF_HDR1_DEV FCy
Packet Header Masks for device number.

VIN_BUF_HDR2_LEN FFy
Packet Header Masks for payload length in words.

VIN_BUF_HDR2_ODD 20004
Packet Header Masks for odd bit (set if the last byte in the last word is padding).

534 Structure Reference
This chapter contains the Structure reference.

Table 17 Structure Overview of Device Driver Interfaces

Name Description

VINETIC_BasicDevicelnit_t VINETIC® Basic Device Initialization structure.
VINETIC_GPIO_CONFIG GPIO Configuration Structure.
VINETIC_IO_GPIO_CONTROL GPIO Control Structure.

VINETIC_IO_INIT Structure used for device initialization
VINETIC_IO_VERSION Version IO structure.

5.3.4.1 VINETIC_BasicDevicelnit_t

Description
VINETIC® Basic Device Initialization structure.

Prototype

typedef struct

{
VIN_ACCESS AccessMode;

Preliminary User’'s Manual 44 Revision 1.2, 2006-09-01
Programmer’s Reference

.. VINETIC®-CPE
@l n@ Chip Set Family

CONFIDENTIAL Device Driver Interfaces Reference

IFX_uint32_t nBaseAddress;
IFX_int32_t nIrgNum;
} VINETIC_BasicDeviceInit_t;

Parameters

Data Type Name Description

VIN_ACCESS AccessMode Access mode for VINETIC® device.

IFX_uint32_t nBaseAddress VINETIC® physical base address.

IFX_int32_t nirgNum VINETIC® device irq number, as defined by the
target OS.

5.3.4.2 VINETIC_GPIO_CONFIG

Description
GPIO Configuration structure.

Prototype

typedef struct
{

IFX_uintl6é_t nGpio;

IFX_uint32_t nMode;

IFX_void_t (*callback) (int nDev, int nCh, unsigned short nEvt) ;
} VINETIC_GPIO_CONFIG_t;

Parameters

Data Type Name Description

IFX_uint16_t nGpio Mask for GPIO resources.

IFX_uint32_t nMode GPIO mode (input, output, interrupt).

IFX_void_t (*callback)(int nDev, int nCh, | Callback for interrupt routine.
unsigned short nEvt)

5.3.4.3 VINETIC_IO_GPIO_CONTROL

Description
GPI0O Control Structure.

Prototype

typedef struct

{
IFX_int32_t ioHandle;
IFX_uintl6é_t nGpio;
IFX_uintl6_t nMask;

} VINETIC_IO_GPIO_CONTROL_t;

Preliminary User’s Manual 45 Revision 1.2, 2006-09-01
Programmer’s Reference

VINETIC®-CPE
Chip Set Family

CONFIDENTIAL

Device Driver Interfaces Reference

Parameters

Data Type Name Description

IFX_int32_t ioHandle GPIO handle.

IFX_uint16_t nGpio GPIO resource mask. Least significant bit
corresponds to pin 0.

IFX_uint16_t nMask Mask for current command.

5.3.44 VINETIC_IO_INIT

Description

Structure used for device initialization.

Prototype

typedef struct
{

IFX_uint8_t* pPRAMfw;

IFX_uint32_t pram_size;

IFX_uint8_t* pDRAMfw;

IFX_uint32_t dram_size;

IFX_uint8_t* pPHIfw;

IFX_uint32_t phi_size;

IFX_uint8_t* pCram;

IFX_uint32_t cram_size;

IFX_uint8_t* pBBDbuf;

IFX_uint32_t bbd_size;

IFX_uint32_t nFlags;

IFX_uintl6_t nPramCRC;

IFX_uintl6_t nDramCRC;

IFX_uintl6_t nPhiCrc;

IFX_uintl6_t nDcCrc;

IFX_uintl6_t nAcCrc;

IFX_uintl6_t nCramCrc;
} VINETIC_TO_INIT t;
Parameters
Data Type Name Description
IFX_uint8_t* pPRAMfw Firmware PRAM pointer or NULL if not needed.
IFX_uint32_t pram_size Size of PRAM firmware in bytes
IFX_uint8_t* pDRAMfw Firmware DRAM pointer or NULL if not needed.
IFX_uint32_t dram_size Size of DRAM firmware in bytes
IFX_uint8_t* pPHIfw Pointer optional PHI program
IFX_uint32_t phi_size Size of PHI program in bytes
IFX_uint8_t* pCram Pointer to CRAM
IFX_uint32_t cram_size Size of CRAM coefficients in bytes
IFX_uint8_t* pBBDbuf Pointer to BBD format data

Preliminary User’'s Manual
Programmer’s Reference

46

Revision 1.2, 2006-09-01

VINETIC®-CPE
Chip Set Family

CONFIDENTIAL

Device Driver Interfaces Reference

Data Type Name Description
IFX_uint32_t bbd_size Size of BBD buffer
IFX_uint32_t nFlags Flags for initialization.

Most of the flags are only used from experts to

modify the default initialization.

* NO_BCONF: no board configuration will be
done. VINETIC® must be properly got out of
reset

* NO_PHI_DWLD: no PHI download will be
done, a properly PHI download before is
assumed

* NO_EDSP_START: no EDPS startis done.
The VVINETIC® will not work until that
command is given

* NO_CRAM_DWLD: no CRAM coefficients
are downloaded. The default ROM
coefficients are used

+ FW_AUTODWLD: firmware auto download

« NO_AC_DWLD: avoid AC download in
case of V1.4, no effect with any other chip
version

+ DC_DWLD: do a DC download in case of
V1.4

* NO_FW_DWLD: no firmware download

IFX_uint16_t nPramCRC Return values of PRAM CRC after firmware
download

IFX_uint16_t nDramCRC Return values of DRAM CRC after firmware
download

IFX_uint16_t nPhiCrc Return values of PHI checksum after PHI
program download.

0 if not done

IFX_uint16_t nDcCrc Return values of DCCTL checksum after

DCCTL download.

0 if not done

IFX_uint16_t nAcCrc Return values of AC control after ALM-DSP
download.

0 if not done

IFX_uint16_t nCramCrc Return values of CRAM checksum after CRAM
download.

0 if not done

5.3.4.5 VINETIC_IO_VERSION

Description
Version |O structure.

Prototype

typedef struct
{

Preliminary User’s Manual
Programmer’s Reference

47

Revision 1.2, 2006-09-01

.. VINETIC®-CPE
@l n@ Chip Set Family

CONFIDENTIAL Device Driver Interfaces Reference

IFX_uint8_t nType;
IFX_uint8_t nChannel;
IFX_uintl6é_t nChip;
IFX_uint32_t nTapiVers;
IFX_uint32_t nDrvVers;
IFX_uintl6_t nEdspVers;
IFX_uintl6é_t nEdspIntern;
} VINETIC_IO_VERSION_t;

Parameters

Data Type Name Description

IFX_uint8_t nType Chip type

IFX_uint8_t nChannel Number of supported analog channels
IFX_uint16_t nChip Chip revision.

IFX_uint32_t nTapiVers Included TAPI version

IFX_uint32_t nDrvVers Driver version.

IFX_uint16_t nEdspVers EDSP maijor version.

IFX_uint16_t nEdsplintern EDSP version step.

5.3.5 Enumerator Reference

This chapter contains the Enumerator reference.

Table 18 Enumerator Overview of Non TAPI Interfaces

Name Description

VINETIC_IO_CHIP_REVISION VINETIC® Chip Revision.

VINETIC_IO_CHIP_MAJOR_REVISION VINETIC® Chip Major Revision.

VINETIC_IO_CHIP_TYPE VINETIC® chip types, depending on register Revision and
firmware download.

VIN_ACCESS VINETIC® Access Modes.

VINETIC_GPIO_MODE GPIO pin configuration modes.

DEV_ERR Driver error codes.

5.3.5.1 VINETIC_IO_CHIP_REVISION

Description
VINETIC® Chip Revision.

Prototype

typedef enum

{
VINETIC_V13 = 0x42,
VINETIC_V14 = 0x84,
VINETIC_V15 = 0x85,
VINETIC_V16 = 0x86,
VINETIC_V21 = 0x90,
VINETIC_V22 = 0xAO0,

Preliminary User’'s Manual 48 Revision 1.2, 2006-09-01
Programmer’s Reference

.. VINETIC®-CPE
@l n@ Chip Set Family

CONFIDENTIAL Device Driver Interfaces Reference

VINETIC_V21_S = 0xBO,

VINETIC_2CPE_V21 = 0x60,

VINETIC_2CPE_V22 = 0x66,

VINETIC_2CPE_AMR = 0x68
} VINETIC_IO_CHIP_REVISION_t;

Parameters

Name Value Description

VINETIC_V13 42, Version V1.3.

VINETIC_V14 84, Version V1.4.

VINETIC_V15 85, Version V1.5, no longer available.
VINETIC_V16 86, Version V1.6, internal version.
VINETIC_V21 90, Version V2.1, VINETIC®-4M.
VINETIC_V22 A0, Version V2.2, VINETIC®-4M/-4C.
VINETIC_V21_S BO, Version V2.1 of VINETIC®-4S.
VINETIC_2CPE_V21 60, Version V2.1 of VINETIC®-2CPE/-1CPE.
VINETIC_2CPE_V22 66, Version V2.2 of VINETIC®-2CPE/-1CPE.
VINETIC_2CPE_AMR 68, AMR of VINETIC®-2CPE/-1CPE.

5.3.5.2 VINETIC_IO_CHIP_MAJOR_REVISION

Description
VINETIC® Chip Major Revision.

Prototype

typedef enum

{
VINETIC_V1x 1,
VINETIC_V2x = 2

} VINETIC_TIO_CHIP_MAJOR_REVISION_t;

Parameters

Name Value Description
VINETIC_V1x 15 Version V1.x.
VINETIC_V2x 25 Version V2.x.

5.3.5.3 VINETIC_IO_CHIP_TYPE

Description
VINETIC® chip types, depending on register REVISION and firmware download.

Prototype

typedef enum
{

Preliminary User’s Manual 49 Revision 1.2, 2006-09-01
Programmer’s Reference

@ neon VINETIC®-CPE
Chip Set Family

/

CONFIDENTIAL Device Driver Interfaces Reference

VINETIC_TYPE_S = 0x0,

VINETIC_TYPE_M = 0x1,

VINETIC_TYPE_VIP = 0x2,

VINETIC_TYPE_C = 0x4,

VINETIC_TYPE_CPE = 0x5
} VINETIC_IO_CHIP_TYPE_ t;

Parameters

Name Value Description
VINETIC_TYPE_S 0y Chip type S
VINETIC_TYPE_M 14 Chip type M
VINETIC_TYPE_VIP 2, Chip type VIP
VINETIC_TYPE_C 4, Chip type C
VINETIC_TYPE_CPE 54 Chip type CPE

53.5.4 VIN_ACCESS

Description
VINETIC® Access Modes.

Only available in VINETIC®-2CPE/-1CPE Version 2.1: 8-bit INTEL Mux, 8-bit INTEL Demux, 8-bit Motorola, and
SCI.

Prototype

typedef enum

{
VIN_ACCESS_SPT 0,
VIN_ACCESS_SCI 1,
VIN_ACCESS_PAR_16BIT = 2,
VIN_ACCESS_PAR_8BIT = 3,
VIN_ACCESS_PARINTEL_DMUX1l6 = 4,
VIN_ACCESS_PARINTEL_MUX16 = 5,
VIN_ACCESS_PARINTEL_MUX8 = 6,
VIN_ACCESS_PARINTEL_DMUX8 = 7,
VIN_ACCESS_PARINTEL_DMUX8_BE = 8,
VIN_ACCESS_PARINTEL_DMUX8_LE = 9,
VIN_ACCESS_PAR_8BIT V2 = 10

} VIN_ACCESS_t;

Parameters

Name Value Description

VIN_ACCESS_SPI 0p Host interface used, SPI.

VIN_ACCESS_SCI 15 Host interface used, SCI.
VIN_ACCESS_PAR_16BIT 25 Host interface used, parallel Motorola 16-bit.
VIN_ACCESS PAR_8BIT 3p Host interface used, parallel Motorola 8-bit.
Preliminary User’'s Manual 50 Revision 1.2, 2006-09-01

Programmer’s Reference

VINETIC®-CPE
Chip Set Family

CONFIDENTIAL

Device Driver Interfaces Reference

Name Value Description
VIN_ACCESS_PARINTEL_DMUX16 4, Host interface used, parallel Intel 16-bit
demultiplexed.
VIN_ACCESS_PARINTEL_MUX16 5p Host interface used, parallel Intel 16-bit
multiplexed.
VIN_ACCESS_PARINTEL_MUX8 6p Host interface used, parallel Intel 8-bit
multiplexed.
VIN_ACCESS_PARINTEL_DMUX8 75 Host interface used, parallel Intel 8-bit
demultiplexed.
VIN_ACCESS_PARINTEL_DMUX8 BE 8p Access parallel intel demux 8-bit big-endian.
Supported by V1 chip version.
This mode should not be used anymore.
VIN_ACCESS_PARINTEL_DMUX8 LE 9% Access parallel intel demux 8-bit little-endian.
Supported by V2 chip version.
This mode should not be used anymore.
VIN_ACCESS_PAR _8BIT V2 10p Access parallel motorola 8-bit big-endian with

16-bit processor interface.
Supported by V2 chip version.
This mode should not be used anymore.

5.3.5.5 VINETIC_GPIO_MODE

Description
GPIO and IO pin configuration modes.

Prototype

typedef enum

{
GPIO_MODE_INPUT = 0x100,
GPIO_MODE_OUTPUT = 0x200,
GPIO_MODE_INT = 0x400,
GPIO_INT_RISING = 0x1000,
GPIO_INT_FALLING = 0x2000,

GPIO_INT_ DUP_05 = 0x0000,
GPIO_INT DUP_45 = 0x0001,
GPIO_INT_DUP_85 = 0x0002,

GPIO_INT DUP_125 = 0x0003,
GPIO_INT DUP_165 = 0x0004,
GPIO_INT DUP_205 = 0x0005,
GPIO_INT DUP_245 = 0x0006,
GPIO_INT DUP_285 = 0x0007,
GPIO_INT _DUP_325 = 0x0008,
GPIO_INT _DUP_365 = 0x0009,
GPIO_INT _DUP_405 = 0x000Aa,
GPIO_INT DUP_445 = 0x000B,
GPIO_INT DUP_485 = 0x000C,
GPIO_INT DUP_525 = 0x000D,
GPIO_INT _DUP_565 = 0xO000E,
GPIO_INT_DUP_605 = 0xO000F

Preliminary User’s Manual
Programmer’s Reference

51

Revision 1.2, 2006-09-01

.. VINETIC®-CPE
@l n@ Chip Set Family

CONFIDENTIAL Device Driver Interfaces Reference

} VINETIC_GPIO_MODE_t;

Parameters

Name Value Description
GPIO_MODE_INPUT 1004 GPIO pin set as input.
GPIO_MODE_OUTPUT 2004 GPIO pin set as output.
GPIO_MODE_INT 400, GPIO pin set as interrupt.
GPIO_INT_RISING 10004 GPIO pin set as rising-edge interrupt.
GPIO_INT_FALLING 20004 GPIO pin set as falling-edge interrupt.
GPIO_INT_DUP_05 0000, Reserved.
GPIO_INT_DUP_45 0001, Reserved.
GPIO_INT_DUP_85 0002, Reserved.
GPIO_INT_DUP_125 0003, Reserved.
GPIO_INT_DUP_165 0004, Reserved.
GPIO_INT_DUP_205 0005, Reserved.
GPIO_INT_DUP_245 0006, Reserved.
GPIO_INT_DUP_285 0007, Reserved.
GPIO_INT_DUP_325 0008, Reserved.
GPIO_INT_DUP_365 0009, Reserved.
GPIO_INT_DUP_405 000A, Reserved.
GPIO_INT_DUP_445 000By Reserved.
GPIO_INT_DUP_485 000Cy, Reserved.
GPIO_INT_DUP_525 000Dy Reserved.
GPIO_INT_DUP_565 000E, Reserved.
GPIO_INT_DUP_605 000F Reserved.

5.3.5.6 DEV_ERR

Description

Driver error codes

Prototype

typedef enum

{
ERR_OK = 0,
ERR_CERR = 0x01,
ERR_CIBX_OF = 0x2,
ERR_HOST = 0x3,
ERR_MIPS_OL = 0x4,
ERR_NO_COBX = 0x5,
ERR_NO_DATA = 0x6,
ERR_NO_FIBXMS = 0x7,
ERR_MORE_DATA = 0x8,
ERR_NO_MBXEMPTY = 0x9,
ERR_NO_DLRDY = 0xA,

Preliminary User’'s Manual 52 Revision 1.2, 2006-09-01
Programmer’s Reference

Inf|neo/n

VINETIC®-CPE
Chip Set Family

CONFIDENTIAL

ERR_WRONGDATA = 0xB,

ERR_OBXML_ZERO =

0xC,

ERR_TEST_FAIL = 0xD,

ERR_HW_ERR = OxE,

ERR_PIBX OF = OxF,
ERR_FUNC_PARM = 0x10,

ERR_TO_CHSTATE =

0x11,

ERR_BUF_UN = 0x12,
ERR_NO_MEM = 0x13,

ERR_NOINIT

0x14,

ERR_INTSTUCK = 0x15,

ERR_LT_ON 0x16,
ERR_NOPHI = 0x17,

ERR_EDSP_FAIL = 0x18,

ERR_FWCRC_FAIL =

0x19,

ERR_NO_TAPI = 0xlA,

ERR_SPI = 0x1B,

ERR_INVALID = 0x1C,

ERR_GRS09 = 0x1D,
ERR_ACCRC_FAIL =
ERR_NO_VERSION
ERR_DCCRC_FATIL

0x1E,
0x1F,
0x20,

ERR_UNKNOWN_VERSION = 0x21,
ERR_LT_LINE_IS_PDNH = 0x22,
ERR_LT_UNKNOWN_PARAM = 0x23,

ERR_CID_TRANSMIT

= 0x24,

ERR_LT_TIMEOUT_LM_OK = 0x25,
ERR_LT_TIMEOUT_LM_RAMP_RDY = 0x26,
ERR_PRAM FW = 0x27,

ERR_NOFW = 0x28,

ERR_PHICRCO = 0x29,

ERR_ARCDWLD_FATL
ERR_ARCDWLD_BOOT

= 0x2A,
= 0x2B,

ERR_FWINVALID = 0x2C,
ERR_NOFWVERS = 0x2D,
ERR_NOMAXCBX = 0x2E,

ERR_SIGMOD_NOTEN

ERR_SIGCH_NOTEN =

= 0x2F,
0x30,

ERR_CODCONF_NOTVALID = 0x31,
ERR_LT_OPTRES_FAILED = 0x32,
ERR_NO_FREE_INPUT_SLOT = 0x33,

ERR_NOTSUPPORTED
ERR_NORESOURCE =
ERR_WRONG_EVPT =

ERR_CON_INVALID =

= 0x34,
0x35,
0x36,
0x37,

ERR_HOSTREG_ACCESS = 0x38,

ERR_NOPKT_BUFF =

ERR_COD_RUNNING =

ERR_TONE_PLAYING

0x39,
0x3Aa,
= 0x3B,

ERR_INVALID_TONERES = 0x3C,
ERR_INVALID_SIGSTATE = 0x3D,

Preliminary User’s Manual
Programmer’s Reference

53

Device Driver Interfaces Reference

Revision 1.2, 2006-09-01

VINETIC®-CPE
Chip Set Family

CONFIDENTIAL

Device Driver Interfaces Reference

ERR_INVALID_UTGSTATE = 0x3E,
ERR_CID_RUNNING = 0x3F,
ERR_UNKNOWN = 0x40,
ERR_WRONG_CHANNEL_MODE = 0x41,
ERR_DRVINIT_FAIL = 0x80,
ERR_DEV_ERR = 0x81

} DEV_ERR_t;

Parameters

Name Value Description

ERR_OK 0 0x0: no error

ERR_CERR 014 Command error reported by VINETIC®, see last
command

ERR_CIBX_OF 2y Command inbox overflow reported by VINETIC®

ERR_HOST 3y Host error reported by VINETIC®

ERR_MIPS_OL 4, MIPS overload.

ERR_NO_COBX 54 No command data received event within time-out.
This error is obsolete, since the driver used a polling
mode

ERR_NO_DATA 64 No command data received within time-out

ERR_NO_FIBXMS Ty Not enough inbox space for writing command

ERR_MORE_DATA 84 More data then expected in outbox

ERR_NO_MBXEMPTY 9% Mailbox was not empty after time-out. This error
occurs while the driver tries to switch the mailbox
sizes before and after the firmware download. The
time-out is given in the constant
WAIT_MBX_EMPTY

ERR_NO_DLRDY Ay Download ready event has not occurred

ERR_WRONGDATA By Register read: expected values do not match

ERR_OBXML_ZERO Cy OBXML is zero after COBX-DATA event.

This error is obsolete, since the driver is polling the
OBXML register, i.e. the COBX-DATA event is not
handled anymore in the interrupt routine.

ERR_TEST_FAIL Dy Test chip access failed.

ERR_HW_ERR Ey Internal EDSP hardware error reported by VINETIC®
in HWSR1:HW-ERR.

ERR_PIBX_OF Fy Mailbox Overflow Error.

ERR_FUNC_PARM 104 Invalid parameter in function call

ERR_TO_CHSTATE 11, Time-out while waiting on channel status change

ERR_BUF_UN 124 Buffer under run in evaluation down streaming

ERR_NO_MEM 134 No memory by memory allocation

ERR_NOINIT 14, Board previously not initialized

ERR_INTSTUCK 15, Interrupts can not be cleared

ERR LT _ON 164 Line testing measurement is running

Preliminary User’'s Manual
Programmer’s Reference

54

Revision 1.2, 2006-09-01

VINETIC®-CPE
Chip Set Family

CONFIDENTIAL

Device Driver Interfaces Reference

Name Value Description

ERR_NOPHI 174 PHI patch was not successfully downloaded. The
problem was a chip access problem

ERR_EDSP_FAIL 184 EDSP Failures.

ERR_FWCRC_FAIL 19, CRC Fail while FW download.

ERR_NO_TAPI 1A, TAPI not initialized.

ERR_SPI 1By Error while using SPI Interface.

ERR_INVALID 1Cy Inconsistent or invalid parameters were provided

ERR_GR909 1Dy No Data to copy to user space for GR909
measurement

ERR_ACCRC_FAIL 1E, CRC Fail while ALM-DSP download for V1.4.

ERR_NO_VERSION 1F, Couldn't read out chip version

ERR_DCCRC_FAIL 204 CRC Fail in DCCTRL download.

ERR_UNKNOWN_VERSION 21, Unknown chip version

ERR LT _LINE_IS PDNH 22, Linetesting, line is in Power Down High Impedance,
measurement not possible.

ERR_LT_UNKNOWN_PARAM 23, Linetesting, unknown Parameter.

ERR_CID_TRANSMIT 24, Error while sending CID.

ERR LT TIMEOUT LM _OK 25, Linetesting, time-out waiting for LM_OK.

ERR_LT_TIMEOUT_LM_RAMP_RDY 26y Linetesting, time-out waiting for RAMP_RDY

ERR_PRAM_FW 27y, Invalid pram fw length

ERR_NOFW 28 No firmware specified and not included in driver

ERR_PHICRCO 29, PHI CRC is zero.

ERR_ARCDWLD_FAIL 2A, Embedded Controller download failed.

ERR_ARCDWLD_BOOT 2By Embedded Controller boot failed after download.

ERR_FWINVALID 2Cy Firmware binary is invalid.

ERR_NOFWVERS 2Dy Firmware version could not be read, no answer to
command.

ERR_NOMAXCBX 2E, Maximize mailbox failed.

ERR_SIGMOD_NOTEN 2F, Signaling module not enabled.

ERR_SIGCH_NOTEN 304 Signaling channel not enabled.

ERR_CODCONF_NOTVALID 314 Coder configuration not valid

ERR_LT_OPTRES_FAILED 32, Linetesting, optimum result routine failed.

ERR_NO_FREE_INPUT_SLOT 334 No free input found while connecting cod, sig and alm
modules.

ERR_NOTSUPPORTED 34, Feature or combination not supported

ERR_NORESOURCE 35, Resource not available

ERR_WRONG_EVPT 36, Event payload type mismatch.

ERR_CON_INVALID 374 Connection not valid on remove.

ERR_HOSTREG_ACCESS 38, Host register access failure [2CPE].

ERR_NOPKT_BUFF 39y No packet buffers available.

ERR_COD_RUNNING 3A4 At least one parameter is not possible to apply when

the coder is running. Event payload types cannot be
changed on the fly.

Preliminary User’s Manual
Programmer’s Reference

55

Revision 1.2, 2006-09-01

VINETIC®-CPE
Chip Set Family

CONFIDENTIAL

Device Driver Interfaces Reference

Name Value Description

ERR_TONE_PLAYING 3By Tone is already played out on this channel.

ERR_INVALID TONERES 3Cy Tone resource is not capable playing out a certain
tone. This error should not occur -> internal
mismatch.

ERR_INVALID_SIGSTATE 3Dy Invalid state for switching off signaling modules.

Internal error.

ERR_INVALID_UTGSTATE 3E, Invalid state for switching off signaling modules.
Internal error.

ERR_CID_RUNNING 3F, Cid sending is ongoing in this channel.

ERR_UNKNOWN 40 Some internal state occured, that could not be

handled. This error should never occur.

ERR_WRONG_CHANNEL_MODE 41, Action not supported with this TAPI initialisation
mode.

ERR_DRVINIT_FAIL 80, Driver initialization failed

ERR_DEV_ERR 814 General access error, RDQ bit is always 1

5.3.6 Function Reference

This chapter contains the function reference.

Table 19 Function Overview of Non TAPI Interfaces

Name

Description

VINETIC_OpenKernel

Open the device from kernel mode.

VINETIC_ReleaseKernel

Release a VINETIC® 10 or GPIO pin resource.

VINETIC_GpioReserve

Reserve a VINETIC® IO or GPIO pin resource.

VINETIC_GpioRelease

Release a VINETIC® IO or GPIO pin resource.

VINETIC_GpioConfig

Configure a VINETIC® 10 or GPIO pin.

VINETIC_GpioSet

Set the value of a VINETIC® IO or GPIO pin.

VINETIC_GpioGet

Read the value from a VINETIC® 10 or GPIO pin.

VINETIC_GpiolntMask

Set the interrupt enable mask.

5.3.6.1 VINETIC_OpenKernel

Description

Open the device from Kernel mode.

Prototype

IFX_int32_t VINETIC_OpenKernel (
IFX_int32_t nbDev,

IFX_int32_t nCh

Preliminary User’'s Manual
Programmer’s Reference

) ;

56 Revision 1.2, 2006-09-01

.. VINETIC®-CPE
@l n@ Chip Set Family

CONFIDENTIAL Device Driver Interfaces Reference

Parameters

Data Type Name Description

IFX_int32_t nDev Index of the VINETIC® device

IFX_int32_t nCh Index of the VINETIC® channel (1 = channel
0..)

Return Values

Data Type Description

IFX_int32_t The return value can be either of the following:
+ IFX_SUCCESS 0

+ IFX_ERROR -1

Remarks

If not already done this will

allocate internal memory for each new device
allocate io memory

initialize the device

set up the interrupt

5.3.6.2 VINETIC_ReleaseKernel

Description
Release a VINETIC® IO or GPIO pin resource.

Prototype

IFX_int32_t VINETIC_ReleaseKernel (
IFX_int32_t nHandle);

Parameters
Data Type Name Description
IFX_int32_t nHandle Handle returned by VINETIC_GpioReserve

Return Values

Data Type Description

IFX_int32_t The return value can be either of the following:
+ IFX_SUCCESS 0

+ IFX_ERROR -1

5.3.6.3 VINETIC_GpioReserve

Description
Reserve a VINETIC® 10 or GPIO pin resource.

Preliminary User’s Manual 57 Revision 1.2, 2006-09-01
Programmer’s Reference

.. VINETIC®-CPE
@l n@ Chip Set Family

CONFIDENTIAL Device Driver Interfaces Reference

Prototype

IFX_int32_t VINETIC_GpioReserve (
IFX_int32_t devHandle,
IFX_uintl6é_t nGpio);

Parameters
Data Type Name Description
IFX_int32_t devHandle Handle to either VINETIC® device or channel
structure
IFX_uint16_t nGpio Mask for GPIOs to reserve (0 = free, 1 =
reserve)
Return Values
Data Type Description
IFX_int32_t The return value can be either of the following:
+ IFX_SUCCESS 0
* IFX_ERROR -1
5.3.6.4 VINETIC_GpioRelease
Description
Release a VINETIC® IO or GPIO pin resource.
Prototype
IFX_int32_t VINETIC_GpioRelease (
IFX_int32_t ioHandle);
Parameters
Data Type Name Description
IFX_int32_t ioHandle Handle returned by VINETIC_GpioReserve
Return Values
Data Type Description
IFX_int32_t The return value can be either of the following:
* IFX_SUCCESS 0
* IFX_ERROR -1
5.3.6.5 VINETIC_GpioConfig
Description
Configure a VINETIC® 10 or GPIO pin.
Preliminary User’'s Manual 58 Revision 1.2, 2006-09-01

Programmer’s Reference

VINETIC®-CPE
Chip Set Family

CONFIDENTIAL

Prototype
IFX_int32_t VINETIC_GpioConfig ();

Return Values

Device Driver Interfaces Reference

Data Type Description

IFX_int32_t The return value can be either of the following:
+ IFX_SUCCESS 0
+ IFX_ERROR -1

5.3.6.6 VINETIC_GpioSet

Description
Set the value of a VINETIC® |0 or GPIO pin.

Prototype

IFX_int32_t VINETIC_GpioSet (
IFX_int32_t ioHandle,
IFX_uintl6_t nSet,
IFX_uintl6_t nMask);

Parameters

Data Type Name Description

IFX_int32_t ioHandle Handle returned by VINETIC_GpioReserve
IFX_uint16_t nSet Values to store

IFX_uint16_t nMask Only bits set to '1" will be stored

Return Values

Data Type Description

IFX_int32_t The return value can be either of the following:
+ IFX_SUCCESS 0
+ IFX_ERROR -1

5.3.6.7 VINETIC_GpioGet

Description
Read the value from a VINETIC® 10 or GPIO pin.

Prototype

IFX_int32_t VINETIC_GpioGet (
IFX_int32_t i1ioHandle,
IFX_uintl6_t* nGet,
IFX_uintl6_t nMask);

Preliminary User’s Manual 59
Programmer’s Reference

Revision 1.2, 2006-09-01

.. VINETIC®-CPE
@l n@ Chip Set Family

CONFIDENTIAL Device Driver Interfaces Reference
Parameters

Data Type Name Description

IFX_int32_t ioHandle Handle returned by VINETIC_GpioReserve
IFX_uint16_t* nGet Pointer where the read value shall be stored
IFX_uint16_t nMask Only bits set to '1" will be stored

Return Values

Data Type Description

IFX_int32_t The return value can be either of the following:
+ IFX_SUCCESS 0

* IFX_ERROR -1

5.3.6.8 VINETIC_GpiolntMask

Description
Set the interrupt enable mask.

Prototype

IFX_int32_t VINETIC_GpioIntMask (
IFX_int32_t ioHandle,
IFX_uintl6_t nSet,
IFX_uintl6_t nMask,
IFX_uint32_t nMode);

Parameters
Data Type Name Description
IFX_int32_t ioHandle Handle returned by VINETIC_GpioReserve
IFX_uint16_t nSet Bitmask for interrupts to mask (0 = unmasked,
1 = masked)
IFX_uint16_t nMask Mask to write to interrupt enable register
IFX_uint32_t nMode Mode according to VINETIC_GPIO_MODE
Return Values
Data Type Description
IFX_int32_t The return value can be either of the following:
+ IFX_SUCCESS 0
+ IFX_ERROR -1
Preliminary User’'s Manual 60 Revision 1.2, 2006-09-01

Programmer’s Reference

@ neon VINETIC®-CPE
Chip Set Family

/

CONFIDENTIAL References

References

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
9]

VINETIC®-2CPE/-1CPE (PEB/PEF 3332/-3331) Version 2.2 Prel. Data Sheet Rev. 1.0, 2006-07-07
VINETIC®-2ATA/-1ATA/-CL/-0 Version 2.2 Prel. Data Sheet Rev. 1.0, 2006-08-07

VINETIC®-2CPE/-1CPE (PEB/PEF 3332/-3331) Version 2.2 Hardware Design Guide Rev. 1.0, 2006-08-16
VINETIC®-CPE Prel. User's Manual System Description Rev. 2.0, 2006-08-22

TAPI User's Manual Programmer's Reference Rev. 1.2, 2006-08-09

T.38 Fax Agent Release 1.2 User's Manual Programmer's Reference Rev. 1.0, 2006-08-16

T.38 Protocol Stack Release 1.22 User's Manual Programmer's Reference Rev. 1.0, 2006-08-16

T.38 Test Application Release 1.3 User's Manual Programmer's Reference Rev. 1.0, 2006-08-28
VINETIC®-CPE T.38 Fax Relay Package Release Notes

[10] VINETIC®-CPE System Package Release Notes
[11] VINETIC®-CPE Device Driver Prel. User's Manual Driver and API Description Rev. 1.1, 2006-03-29
[12] VINETIC®-CPE Device Driver Porting and Integration Guide, Rev. 1.0, 2006-03-06.

Attention: Please refer to the latest revision of the documents.

Preliminary User’s Manual 61 Revision 1.2, 2006-09-01
Programmer’s Reference

. VINETIC®-CPE
@lneon Chip Set Family
/
CONFIDENTIAL Terminology
Terminology
A
ACK Acknowledge
AGC Automatic Gain Control
ALM Analog Line Module
API Application Program Interface
B
BT British Telecom
C
CFG Configuration
CH Channel
CID Caller ID
COD Coder module
CPE Customer Premises Equipment
CPT Call Progress Tone
CTPD Call Progress Tone Detector
D
DEC Decoding
DTMF Dual Tone Multiple Frequency
E
ENC Encoding
ETSI European Telecommunications Standards Institute
F
Fd File descriptor
FSK Frequency Shift Keying
G
GPIO General Purpose Inupt Output
|
IETF Internet Engineering Task Force
IFX Infineon
10 Input/Output
J
JB Jitter Buffer
L
LEC Line Echo Canceller
LR Line Reversal
LT Line Testing
M
MSG Message
MWI Message Waiting Indication
N
NLP Non Linear Processing
Preliminary User’s Manual 62 Revision 1.2, 2006-09-01

Programmer’s Reference

. VINETIC®-CPE
@lneon Chip Set Family
/
CONFIDENTIAL Terminology
NTT Nippon Telegraph and Telephone Company
o
OOB Out of band
P
PCM Pulse Code Modulation
PKT Packet
POTS Plain Old Telephone System
PSTN Public Switched Telephone Network
R
RFC IETF Request for Comment
RTCP Real Time Control Protocol
RTP Real Time Protocol
RX Receive
S
SID Silence Insertion Descriptor
SIG Signaling module
SIN BT Supplier’s Information Note
SoC System on a chip
SSRC Synchronization source
T
TAPI Telephone API
TX Transmit
U
UTG Universal Tone Generator
Vv
VAD Voice Activity Detector
VMWI Visual Message Waiting Indication
VolP Voice over IP
Preliminary User’s Manual 63 Revision 1.2, 2006-09-01

Programmer’s Reference

http://www.infineon.com

	Table of Contents
	List of Figures
	List of Tables
	Preface
	1 Introduction
	1.1 Introduction to the Device Driver
	1.1.1 Introduction to TAPI V3.x
	1.1.2 Device Driver Interfaces
	1.1.3 Device Driver Porting

	1.2 VINETIC® Access
	1.2.1 VINETIC® Parallel Access
	1.2.2 VINETIC® SPI Access

	1.3 Compilation
	1.3.1 Linux®
	1.3.1.1 Loading of the TAPI Modules and Registration
	1.3.1.2 Support of proc File System

	1.3.2 VxWorks®

	2 Device Driver Integration
	2.1 Interface Files
	2.2 Data Types
	2.3 Relevant VINETIC® Driver Interfaces for Integration
	2.3.1 Device Nodes
	2.3.1.1 Linux®
	2.3.1.2 VxWorks®

	2.3.2 VINETIC® Basic Device Initialization
	2.3.3 VINETIC® Device Reset

	2.4 VINETIC® Driver Integration Details
	2.4.1 Driver Integration - Flow Overview
	2.4.2 Driver Integration - Detailed Steps
	2.4.2.1 Step 0
	2.4.2.2 Step 1
	2.4.2.3 Step 2
	2.4.2.4 Step 3
	2.4.2.5 Step 4
	2.4.2.6 Step 5
	2.4.2.7 Step 6
	2.4.2.8 Step 7
	2.4.2.9 Step 8

	2.4.3 Advanced Integration Code Example

	3 Device Driver Porting
	3.1 Clocking Considerations
	3.2 Reset Considerations
	3.3 Endianess Considerations
	3.4 Access Mode Considerations
	3.5 Interrupt Considerations
	3.6 SLIC Considerations
	3.6.1 CRAM Coefficients

	3.7 Multiple VINETIC® Chip Support
	3.7.1 Shared Interrupt Concept
	3.7.2 Shared Reset Line

	3.8 Other System Considerations
	3.9 VINETIC® Driver System Configuration File

	4 Description of the Device Driver Interfaces
	4.1 Device Initialization
	4.2 Miscellaneus Interfaces
	4.3 General-Purpose IOs

	5 Device Driver Interfaces Reference
	5.1 ioctl Interfaces
	5.1.1 Basic Interface
	5.1.1.1 FIO_VINETIC_VERS
	5.1.1.2 FIO_VINETIC_LASTERR

	5.1.2 Driver Initialization Interface
	5.1.2.1 FIO_VINETIC_BASICDEV_INIT
	5.1.2.2 FIO_VINETIC_DEV_RESET

	5.1.3 GPIO Interface
	5.1.3.1 FIO_VINETIC_GPIO_RESERVE
	5.1.3.2 FIO_VINETIC_GPIO_CONFIG
	5.1.3.3 FIO_VINETIC_GPIO_SET
	5.1.3.4 FIO_VINETIC_GPIO_GET
	5.1.3.5 FIO_VINETIC_GPIO_RELEASE

	5.2 Driver Function Interfaces
	5.3 Type Definition Reference
	5.3.1 Basic Type Definitions
	5.3.1.1 IFX_return_t
	5.3.1.2 IFX_boolean_t
	5.3.1.3 IFX_uint8_t
	5.3.1.4 IFX_int8_t
	5.3.1.5 IFX_uint32_t
	5.3.1.6 IFX_int32_t
	5.3.1.7 IFX_uint16_t
	5.3.1.8 IFX_int16_t
	5.3.1.9 IFX_char_t
	5.3.1.10 IFX_void_t
	5.3.1.11 IFX_float_t
	5.3.1.12 IFX_operation_t
	5.3.1.13 IFX_vuint8_t
	5.3.1.14 IFX_vint8_t
	5.3.1.15 IFX_vuint16_t
	5.3.1.16 IFX_vint16_t
	5.3.1.17 IFX_vuint32_t
	5.3.1.18 IFX_vint32_t
	5.3.1.19 IFX_vfloat_t

	5.3.2 IO-control Reference
	5.3.3 Constant Reference
	5.3.4 Structure Reference
	5.3.4.1 VINETIC_BasicDeviceInit_t
	5.3.4.2 VINETIC_GPIO_CONFIG
	5.3.4.3 VINETIC_IO_GPIO_CONTROL
	5.3.4.4 VINETIC_IO_INIT
	5.3.4.5 VINETIC_IO_VERSION

	5.3.5 Enumerator Reference
	5.3.5.1 VINETIC_IO_CHIP_REVISION
	5.3.5.2 VINETIC_IO_CHIP_MAJOR_REVISION
	5.3.5.3 VINETIC_IO_CHIP_TYPE
	5.3.5.4 VIN_ACCESS
	5.3.5.5 VINETIC_GPIO_MODE
	5.3.5.6 DEV_ERR

	5.3.6 Function Reference
	5.3.6.1 VINETIC_OpenKernel
	5.3.6.2 VINETIC_ReleaseKernel
	5.3.6.3 VINETIC_GpioReserve
	5.3.6.4 VINETIC_GpioRelease
	5.3.6.5 VINETIC_GpioConfig
	5.3.6.6 VINETIC_GpioSet
	5.3.6.7 VINETIC_GpioGet
	5.3.6.8 VINETIC_GpioIntMask

	References
	Terminology

